Fundamental understanding
of catalytic deactivation phenomena such
as sulfur poisoning occurring on metal/metal-oxide interfaces is essential
for the development of high-performance heterogeneous catalysts with
extended lifetimes. Unambiguous identification of catalytic poisoning
species requires experimental methods simultaneously delivering accurate
information regarding adsorption sites and adsorption geometries of
adsorbates with nanometer-scale spatial resolution, as well as their
detailed chemical structure and surface functional groups. However,
to date, it has not been possible to study catalytic sulfur poisoning
of metal/metal-oxide interfaces at the nanometer scale without sacrificing
chemical definition. Here, we demonstrate that near-field nano-infrared
spectroscopy can effectively identify the chemical nature, adsorption
sites, and adsorption geometries of sulfur-based catalytic poisons
on a Pd(nanodisk)/Al2O3 (thin-film) planar model
catalyst surface at the nanometer scale. The current results reveal
striking variations in the nature of sulfate species from one nanoparticle
to another, vast alterations of sulfur poisoning on a single Pd nanoparticle
as well as at the assortment of sulfate species at the active metal–metal-oxide
support interfacial sites. These findings provide critical molecular-level
insights crucial for the development of long-lifetime precious metal
catalysts resistant toward deactivation by sulfur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.