Very recently, searching for new topological nodal line semimetals (TNLSs) and drum-head-like (DHL) surface states has become a hot topic in the field of physical chemistry of materials. Via first principles, in this study, a synthesized CsCl type binary alloy, TiOs, was predicted to be a TNLS with three topological nodal lines (TNLs) centered at the X point in the k x/y/z = p plane, and these TNLs, which are protected by mirror, time reversal (T) and spatial inversion (P) symmetries, are perpendicular to one another. The exotic drum-head-like (DHL) surface states can be clearly observed inside and outside the crossing points (CPs) in the bulk system. The CPs, TNLs, and DHL surface states of TiOs are very robust under the influences of uniform strain, electron doping, and hole doping. Spin-orbit coupling (SOC)-induced gaps can be found in this TiOs system when the SOC is taken into consideration. When the SOC is involved, surface Dirac cones can be found in this system, indicating that the topological properties are still maintained. Similar to TiOs, ZrOs and HfOs alloys are TNLSs under the Perdew-Burke-Ernzerhof method. The CPs and the TNLs in both alloys disappear, however, under the Heyd-Scuseria-Ernzerhof method. It is hoped that the DHL surface property in TiOs can be detected by surface sensitive probes in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.