We study the temperature dependence of the upper critical
field Hc2(T) for superconducting magnesium diboride,
MgB2 in the vicinity of Tc using a two-band
Ginzburg-Landau (G-L) theory. The temperature dependence of Hc2(T) near Tc exhibits a positive curvature. In addition,
the calculated temperature dependence and its higher-order
derivatives are also shown to be in good agreement with the
experimental data. In analogy with the multi-band character of the
Eliashberg microscopic theory, the positive curvature of Hc2(T) is described reasonably by solving the two-band G-L theory.
The structural, electronic, mechanic, vibrational and thermodynamic properties of Ti2SiB which is a hypothetical MAX phase compound, have been investigated using density functional theory calculations. The structural optimization of Ti2SiB has been performed and the results have been compared with Ti2SiC, Ti2SiN, and Ti2AlB that are studied in the literature. Then the band structure and corresponding partial density of states are computed.In addition, charge density and Bader charge analysis have been performed. The elastic constants have been obtained, then the secondary results such as bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and Vickers Hardness of polycrystalline aggregates have been derived, and the relevant mechanical properties have been discussed.Moreover, the elastic anisotropy has been visualized in detail by plotting the directional dependence of compressibility, Poisson ratio, Young's and Shear moduli. Furthermore, the phonon dispersion curves as well as corresponding phonon PDOS, and thermodynamical properties such as free energy, entropy and heat capacity have been computed and the obtained results have been discussed in detail. This study provides the first considerations of Ti2SiB that could have a potential application in nuclear industry.
Summary
Hydrogen storage is one of the attractive research interests in recent years due to the advantages of hydrogen to be used as energy source. The studies on hydrogen storage applications focus mainly on investigation of hydrogen storage capabilities of newly introduced compounds. The present paper aims at characterization of CaXH3 (X: Mn, Fe, or Co) perovskite‐type hydrides for the first time to understand their potential contribution to the hydrogen storage applications. CaXH3 compounds have been investigated by density functional theory studies to reveal their various characteristics and hydrogen storage properties. CaXH3 compounds have been optimized in cubic crystal structure and the lattice constants of studied compounds have been obtained as 3.60, 3.50, and 3.48 Å for X: Mn, Fe, and Co compounds, respectively. The optimized structures have negative formation enthalpies pointing out that studied compounds are thermodynamically stable and could be synthesized experimentally. The gravimetric hydrogen storage densities of X: Mn, Fe, and Co compounds were found in as 3.09, 3.06, and 2.97 wt%, respectively. The revealed values for hydrogen storage densities indicate that CaXH3 compounds may be potential candidates for hydrogen storage applications. Moreover, various mechanical parameters of interest compounds like elastic constants, bulk modulus, and Poisson's ratio have been reported throughout the study. These compounds were found mechanically stable with satisfying Born stability criteria. Further analyses based on Cauchy pressure and Pugh criterion, showed that they have brittleness nature and relatively hard materials. In addition, the electronic characteristics, band structures, and associated partial density of states of CaXH3 hydrides have been revealed. The dynamic stability behavior of them was verified based on the phonon dispersion curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.