The genus Trigonopterus Fauvel, 1862 is highly diverse in Melanesia. Only one species, Trigonopterus amphoralis Marshall, 1925 was so far recorded West of Wallace’s Line (Eastern Sumatra). Based on focused field-work the fauna from Sundaland (Sumatra, Java, Bali, Palawan) and the Lesser Sunda Islands (Lombok, Sumbawa, Flores) is here revised. We redescribe Trigonopterus amphoralis Marshall and describe an additional 98 new species: Trigonopterus acuminatus sp. n., Trigonopterus aeneomicans sp. n., Trigonopterus alaspurwensis sp. n., Trigonopterus allopatricus sp. n., Trigonopterus allotopus sp. n., Trigonopterus angulicollis sp. n., Trigonopterus argopurensis sp. n., Trigonopterus arjunensis sp. n., Trigonopterus asper sp. n., Trigonopterus attenboroughi sp. n., Trigonopterus baliensis sp. n., Trigonopterus batukarensis sp. n., Trigonopterus bawangensis sp. n., Trigonopterus binodulus sp. n., Trigonopterus bornensis sp. n., Trigonopterus cahyoi sp. n., Trigonopterus costipennis sp. n., Trigonopterus cuprescens sp. n., Trigonopterus cupreus sp. n., Trigonopterus dacrycarpi sp. n., Trigonopterus delapan sp. n., Trigonopterus dentipes sp. n., Trigonopterus diengensis sp. n., Trigonopterus dimorphus sp. n., Trigonopterus disruptus sp. n., Trigonopterus dua sp. n., Trigonopterus duabelas sp. n., Trigonopterus echinatus sp. n., Trigonopterus empat sp. n., Trigonopterus enam sp. n., Trigonopterus fissitarsis sp. n., Trigonopterus florensis sp. n., Trigonopterus foveatus sp. n., Trigonopterus fulgidus sp. n., Trigonopterus gedensis sp. n., Trigonopterus halimunensis sp. n., Trigonopterus honjensis sp. n., Trigonopterus ijensis sp. n., Trigonopterus javensis sp. n., Trigonopterus kalimantanensis sp. n., Trigonopterus kintamanensis sp. n., Trigonopterus klatakanensis sp. n., Trigonopterus lampungensis sp. n., Trigonopterus latipes sp. n., Trigonopterus lima sp. n., Trigonopterus lombokensis sp. n., Trigonopterus merubetirensis sp. n., Trigonopterus mesehensis sp. n., Trigonopterus micans sp. n., Trigonopterus misellus sp. n., Trigonopterus palawanensis sp. n., Trigonopterus pangandaranensis sp. n., Trigonopterus paraflorensis sp. n., Trigonopterus pararugosus sp. n., Trigonopterus parasumbawensis sp. n., Trigonopterus pauxillus sp. n., Trigonopterus payungensis sp. n., Trigonopterus porcatus sp. n., Trigonopterus pseudoflorensis sp. n., Trigonopterus pseudosumbawensis sp. n., Trigonopterus punctatoseriatus sp. n., Trigonopterus ranakensis sp. n., Trigonopterus relictus sp. n., Trigonopterus rinjaniensis sp. n., Trigonopterus roensis sp. n., Trigonopterus rugosostriatus sp. n., Trigonopterus rugosus sp. n., Trigonopterus rutengensis sp. n., Trigonopterus saltator sp. n., Trigonopterus santubongensis sp. n., Trigonopterus sasak sp. n., Trigonopterus satu sp. n., Trigonopterus schulzi sp. n., Trigonopterus sebelas sp. n., Trigonopterus sembilan sp. n., Trigonopterus sepuluh sp. n., Trigonopterus seriatus sp. n., Trigonopterus serratifemur sp. n., Trigonopterus setifer sp. n., Trigonopterus silvestris sp. n., Trigonopterus sin...
The Indo‐Australian region was formed by the collision of the Australian and Asian plates, and its fauna largely reflects this dual origin. Lydekker's and Wallace's Lines represent biogeographic transition boundaries between biotas although their permeability through geological times was rarely assessed. Here, we explore the evolutionary history of flightless weevils of the tribe Celeuthetini in this geologically highly complex region. We generated a DNA sequence data set of 2236 bp comprising two nuclear and two mitochondrial markers for 62 species of the Indo‐Australian tribe Celeuthetini. We used Bayesian Inference and Maximum Likelihood to reconstruct the first molecular phylogeny of the group. Based on this phylogenetic tree, we employed the program BioGeoBEARS to infer the biogeographical history of Celeuthetini in the region. The group's radiation begun east of Wallace's Line, probably during the mid‐Eocene. We unveil multiple transgressions of Lydekker's and Wallace's Lines mostly during the Miocene with a significant role of founder‐event speciation. The phylogeny of Celeuthetini is geographically highly structured with the first lineages occurring in New Guinea and the Moluccas, and a deep divergence between two clades largely confined to Sulawesi and their respective sister clades of the Lesser Sunda Islands. Wallace's Line was crossed once from Sulawesi and three times from the Lesser Sunda Islands to Java whilst Lydekker's Line was crossed once from New Guinea to the Moluccas. Although this beetle group shows extensive local diversification with little dispersal, the biogeographical demarcations of the Australasian region appear to have been rather porous barriers to dispersal.
Southeast Asia harbors an extraordinary species richness and endemism. While only covering 4% of the Earth's landmass, this region includes four of the planet's 34 biodiversity hotspots. Its complex geological history generated a megadiverse and highly endemic biota, attracting a lot of attention, especially in the field of island biogeography. Here we used the cricket genus Cardiodactylus as a model system to study biogeographic patterns in Southeast Asia. We carried out molecular analyses to: (1) infer phylogenetic relationships based on five mitochondrial and four nuclear markers, (2) estimate divergence times and infer biogeographical ancestral areas, (3) depict colonization routes, and summarize emigration and immigration events, as well as in situ diversification, and (4) determine whether shifts in species diversification occurred during the course of Cardiodactylus evolution. Our results support the monophyly of the genus and of one of its species groups. Dating and biogeographical analyses suggest that Cardiodactylus originated in the Southwest Pacific during the Middle Eocene. Our reconstructions indicate that Southeast Asia was independently colonized twice during the Early Miocene (ca. 19-16 Million years ago), and once during the Middle Miocene (ca. 13 Million years ago), with New Guinea acting as a corridor allowing westward dispersal through four different passageways: Sulawesi, the Philippines, Java and the Lesser Sunda Islands. Sulawesi also served as a diversification hub for Cardiodactylus through a combination of high immigration and in situ diversification events, which can be accounted for by the complex geological history of the Wallacea region.
Five species of the whip spider genus Sarax are recognized from Borneo, with the following four species newly described: Sarax yayukae sp. nov. from Sabah (Malaysia), West and Central Kalimantan (Indonesia), and three species from East Kalimantan, S. cavernicola sp. nov., S. sangkulirangensis sp. nov., and S. mardua sp. nov.. Sarax mardua and S. cavernicola have pale coloration, reduced eyes and elongate legs suggesting troglomorphic adaptations to cave environments. The characters diagnosing the family Charinidae and the genus Sarax are discussed and revised. The distribution patterns of Sarax species in Southeast Asia, especially in Borneo Island, are discussed in relation to their habitat preferences. The generic status of Stygophrynus moultoni Gravely 1915 (Charontidae) is briefly discussed.
Kurniawan ID, Rahmadi C, Caraka RE, Ardi TE. 2018. Short Communication: Cave-dwelling Arthropod community of Semedi Show Cave in Gunungsewu Karst Area, Pacitan, East Java, Indonesia. Biodiversitas 19: 857-866. Arthropods are a major group of animals which have significant roles in maintaining cave ecosystem stability. Semedi is a new show cave, but information about arthropods in this cave was not available. The use of cave as a tourist attraction will bring environmental changes which potentially disturb cave-dwelling arthropod community. This study aimed to measure arthropod diversity and their relation to abiotic factors in Semedi Show Cave. Arthropods were sampled by hand collecting, a combination of pitfall and bait traps, and Berlese extractor. Abiotic factors measured were climatic and edaphic parameters. Sampling was conducted in the 3 zones of Semedi cave (Entrance, Twilight, and Dark). Data were analyzed by calculation of richness (Margalef), diversity and evenness (Shannon-Wiener) indices, cluster and correlation analyses. A total 1095 individuals of arthropods consisting of 102 morphospecies, belonging to 6 Classes, and 19 Orders were sampled during this study. The entrance zone had higher richness and diversity indices (richness=12.80, diversity=3.40) than the twilight zone (richness=7.85, diversity=3.25) and the dark zone (richness=5.35, diversity=2.63). Meanwhile, the twilight zone had higher evenness index (0.85) than the entrance zone (0.77) and the dark zone (0.77). Each zone of Semedi cave had different abiotic conditions. Abiotic conditions and Arthropod communities in the twilight and dark zones were more similar to each other than to those of the entrance zone. The statistical analyses showed that there were significant correlations between abiotic factors and arthropod communities. Semedi had various cave-dwelling arthropods. Sustainable management of show cave should be applied to minimize the destructive impact of tourism activities on the cave arthropod community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.