Lithium-metal anodes show significant promise for the construction of high-energy rechargeable batteries due to their high theoretical capacity (3860 mAh g -1 ) and low redox potential (-3.04 V vs. a standard hydrogen electrode). When Li metal is used with conventional liquid and solid electrolytes, the poor lithiophilicity of the electrolyte results in an unfavorable parasitic reaction and uneven distribution of Li + flux at the electrode/electrolyte interface. These issues result in limited cycle life and dendrite problems associated with the Li-metal anode that can lead to rapid performance fade, failure and even safety risks of the battery. The lithiophilicity at the anode/electrolyte interface is important for the stable and safe operation of rechargeable Li-metal batteries. In this review, several factors that affect the lithiophilicity of electrolytes are discussed, including surface energy, roughness and chemical interactions. The existing problems and the strategies for improving the lithiophilicity of different electrolytes are also discussed. This review helps to shed light on the understanding of interfacial chemistry vs. Li metal of various electrolytes and guide interfacial engineering towards the practical realization of high-energy
Lithium-sulfur batteries have attracted increasing attentions due to their high specific energy and low costs of electrode materials, yet the practical use of Li-S battery is hindered by unfavorable electrochemical...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.