To date, more than 30 human peptides or proteins have been found to form amyloid fibrils, most of which are associated with human diseases. However, currently, no cure for amyloidosis exists. Therefore, development of therapeutic strategies to inhibit amyloid formation is urgently required. Although the role of some amyloidogenic proteins has not been identified in certain diseases, their self-assembling behavior largely affects their bioactivity. Human calcitonin (hCT) is a hormone peptide containing 32 amino acids and is secreted by the parafollicular cells of the thyroid gland in the human body. It can regulate the concentration of calcium ions in the blood and block the activity of osteoclasts. Therefore, calcitonin has also been considered a therapeutic peptide. However, the aggregation of hCT hinders this process, and hCT has been replaced by salmon calcitonin in drug formulations. Recently, iron oxide nanomaterials have been developed as potential materials for various applications owing to their high biocompatibility, low toxicity, and ease of functionalization. In this study, nanoparticles (NPs) were prepared using a simple chemical coprecipitation method. We first demonstrated that dopamine-conjugated Fe 3 O 4 inhibited hCT aggregation, similar to what we found when carbon dots were used as core materials in the previous study. Later, we continued to simplify the preparation process, that is, the mixing of dihydrocaffeic acid (DCA) and iron oxide NPs, to maintain their stability and inhibitory effect against hCT aggregation. Furthermore, DCA-decorated Fe 3 O 4 can dissociate preformed hCT amyloid fibrils. This appears to be one of the most promising ways to stabilize hCT in solution and may be helpful for amyloidosis treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.