To date, more than 30 human peptides or proteins have been found to form amyloid fibrils, most of which are associated with human diseases. However, currently, no cure for amyloidosis exists. Therefore, development of therapeutic strategies to inhibit amyloid formation is urgently required. Although the role of some amyloidogenic proteins has not been identified in certain diseases, their self-assembling behavior largely affects their bioactivity. Human calcitonin (hCT) is a hormone peptide containing 32 amino acids and is secreted by the parafollicular cells of the thyroid gland in the human body. It can regulate the concentration of calcium ions in the blood and block the activity of osteoclasts. Therefore, calcitonin has also been considered a therapeutic peptide. However, the aggregation of hCT hinders this process, and hCT has been replaced by salmon calcitonin in drug formulations. Recently, iron oxide nanomaterials have been developed as potential materials for various applications owing to their high biocompatibility, low toxicity, and ease of functionalization. In this study, nanoparticles (NPs) were prepared using a simple chemical coprecipitation method. We first demonstrated that dopamine-conjugated Fe 3 O 4 inhibited hCT aggregation, similar to what we found when carbon dots were used as core materials in the previous study. Later, we continued to simplify the preparation process, that is, the mixing of dihydrocaffeic acid (DCA) and iron oxide NPs, to maintain their stability and inhibitory effect against hCT aggregation. Furthermore, DCA-decorated Fe 3 O 4 can dissociate preformed hCT amyloid fibrils. This appears to be one of the most promising ways to stabilize hCT in solution and may be helpful for amyloidosis treatment.
Adoptive cell immunotherapy, especially chimeric antigen receptor (CAR)-T-cells therapy, has made great progress in the clinical treatment of hematological malignancies. However, restricted by the complex tumor microenvironment, the potential efficiency of T-cell infiltration and activated immune cells are limited, thus failure prevented the progression of the solid tumor. Alternatively, tumor-associated macrophages (TAMs), one sustentacular and heterogeneous cellular population within the tumor microenvironment, are regarded as potential therapeutic targets. Recently, CARs have shown tremendous promise in treating malignancies by equipping macrophages. This novel therapeutic strategy circumvents the tumor microenvironment’s limitations and provides a safer therapeutic approach. Meanwhile, nanobiomaterials as gene delivery carriers not only substantially reduce the treatment cost of this novel therapeutic strategy, but also set the foundation for in vivo CAR-M therapy. Here, we highlight the major strategies prepared for CAR-M, emphasizing the challenges and opportunities of these approaches. First, the common therapeutic strategies for macrophages are summarized in clinical and preclinical trials. Namely, TAM-targeted therapeutic strategies: 1) Inhibit monocyte or macrophage recruitment into tumors, 2) deplete TAMs, and 3) reprogramme TAMs to antitumor M1 phenotype. Second, the current development and progress of CAR-M therapy are reviewed, including the researchers’ attempts in CAR structure design, cell origin, and gene delivery vectors, especially nanobiomaterials as an alternative to viral vectors, as well as some challenges faced by current CAR-M therapy are also summarized and discussed. Finally, the field of genetically engineered macrophages integration with nanotechnology for the future in oncology has been prospected.
According to the actual combustion characteristics of loose coal, and in view of the advantages and disadvantages of the existing research equipment for the high-temperature area, a simulated experimental device for the development of coal fire was designed and fabricated. The coal sample of Mengcun coal mine in Xianyang, Shaanxi Province China as the research object, the device was used to simulate the combustion of loose coal, and the distribution and movement of high-temperature area during the combustion were studied. The temperature change of the high-temperature area was obtained from normal temperature to ignition. The results showed that during combustion, the temperature rose first with the increase of time and then decreased. When the temperature reached 309.5 °C, the coal sample started to combustion. In addition, the temperature decreased to the ambient temperature after 600 h. The high-temperature area of the selected coal sample was concentrated in the middle part and the back part of the furnace, which was for the poor thermal conductivity, water evaporation of coal intrinsic quality. Moreover, the temperature decreases in turn during the downward propagation of the high-temperature area in the depth. And its decline to the limit oxygen concentration (1%∼3%) is similar to reaching the combustion point temperature. Due to the influence of water content, pore and oxygen concentration, the movement of oxygen concentration and high temperature areas are mainly moved to the position and crack direction near the wind direction of coal-like combustion, showing nonlinear movement rules.
Coating a film on the surface of fruits to prolong the shelf life is an often-used method. However, wax coating is not sustainable and environmentally compatible. In this study, soybean protein isolate (SPI) and hydroxypropyl methyl cellulose (HPMC) were dissolved to form a coating solution with glycerin added as a plasticizer. The results showed that the tensile strength (TS) of the films increased from 6.52 to 20.76 MPa and the elongation at break (EAB) decreased from 68.07% to 12.67% when HPMC content increased from 0% to 20%, respectively. The intermolecular forces between the SPI and HPMC molecules made the polymers film-forming and the obtained film more continuous and stronger. The obtained film was tested on grapes and cherry tomatoes, which tightly coated with the film without any cracks. This greatly delayed their deterioration. By comparing the mass loss, total soluble solids, hardness, titratable acids, and pH values, the results showed that the coated grapes and cherry tomatoes exhibited higher freshness than the bare ones. This study fabricated an environmentally friendly coating that could prolong the shelf life of fruits, which will potentially promote the healthy development of the fruit industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.