Purpose: Eosinophils are proven to play a role in the prognosis of some malignant-tumors. The prognostic value of eosinophils in glioma patients is, however, scarcely reported. The authors of this article have designed a novel prognostic indicator based on eosinophils and the neutrophil-to-lymphocyte ratio (NLR), named ENS, to predict the survival of patients with glioma. Methods: A retrospective study was conducted on 217 glioma patients. The cutoff values for eosinophil, NLR, and other clinical variables were determined by the receiver operating characteristic (ROC) curve analysis. Patients with both low eosinophil count (<0.08 ×10 9 /L) and high NLR (≥1.70) were given a score of 2. Those with one or neither got a score of 1 or 0, respectively. The nomogram was based on ENS and several other clinical variables, its performance was determined by the concordance index (c-index). Results: Our results showed that ENS is an independent prognostic indicator for overall survival (OS). The three-year OS rates for low-grade glioma patients (LGGs) were 84.0%, 69.0%, and 46.4% for ENS=0, ENS=1, and ENS=2, respectively (P=0.014). The three-year OS incidence for LGGs stratified into eosinophils count ≥0.08×109/L and<0.08×109/L subgroups were 88.1% and 80.0%, respectively (P=0.043). ENS was positively correlated with glioma grade (r=0.311, P<0.001). The c-index for OS prognosis was 0.80 using this nomogram in LGGs. Conclusion: Preoperative ENS can predict OS to some extent for LGGs and can increase prognostic accuracy for individual OS in LGGs postoperatively when incorporating other clinical variables compose a nomogram.
Introduction The effect of dexmedetomidine supplementation on hemodynamic stability for transsphenoidal resection of pituitary adenoma remains controversial. We conduct a systematic review and meta-analysis to explore the influence of dexmedetomidine supplementation on hemodynamic stability for transsphenoidal resection of pituitary adenoma. Methods We have searched PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through August 2020 for randomized controlled trials assessing the effect of dexmedetomidine supplementation on transsphenoidal resection of pituitary adenoma. Results Four randomized controlled trials involving 160 patients were included in the meta-analysis. Overall, compared with the control group for transsphenoidal resection of pituitary adenoma, dexmedetomidine supplementation resulted in significantly reduced mean arterial pressure at 30 minutes [mean difference (MD), −26.62; 95% confidence interval (CI), −36.71 to −16.53; P < 0.00001], heart rate at 30 minutes (MD, −16.50; 95% CI, −32.48 to −0.53; P = 0.04), blood loss (MD, −112.57; 95% CI, −165.12 to −60.01; P < 0.0001), and fentanyl (MD, −154.13; 95% CI, −303.97 to −4.29; P = 0.04), but demonstrated similar incidence of nausea and vomiting (odds ratio, 0.37; 95% CI, 0.13–1.03; P = 0.06), and hypotension (odds ratio, 2.11; 95% CI, 0.49–9.22; P = 0.32). Conclusions Dexmedetomidine supplementation was effective in improving hemodynamic stability for transsphenoidal resection of pituitary adenoma.
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition characterized by impaired social interaction, compromised communication, and restrictive or stereotyped behaviours and interests. Due to the complex pathophysiology of ASD, there are currently no available medical therapies for improving the associated social deficits. Consequently, the present study investigated the effects of STX209, a selective γ-aminobutyric acid type B receptor (GABABR2) agonist, on an environmental rodent model of autism. The mouse model of autism induced by prenatal exposure to valproic acid (VPA) was used to assess the therapeutic potential of STX209 on autism-like behaviour in the present study. This study investigated the effects of STX209 on VPA model mice via behavioral testing and revealed a significant reversal of core/associated autism-like behavior, including sociability and preference for social novelty, novelty recognition, locomotion and exploration activity and marble-burying deficit. This may be associated with STX209 correcting dendritic arborization, spine density and GABABR2 expression in hippocampus of VPA model mice. However, expression of glutamic acid decarboxylase 65/67 in the hippocampus were not altered by STX209. The present results demonstrated that STX209 administration ameliorated autism-like symptoms in mice exposed to VPA prenatally, suggesting that autism-like symptoms in children with a history of prenatal VPA exposure may also benefit from treatment with the GABABR2 agonist STX209.
Deep brain stimulation (DBS) modulates the neuronal activity in specific brain circuits and has been recently considered as a promising intervention for refractory addiction. The insula cortex is the hub of interoception and is known to be involved in different aspects of substance use disorder. In the present study, we investigate the effects of continuous high frequency DBS in the anterior insula (AI) on drug-seeking behaviors and examined the molecular mechanisms of DBS action in morphine-addicted rats. Sprague-Dawley rats were trained to the morphine-conditioned place preference (CPP, day 1–8) followed by bilaterally implanted with DBS electrodes in the AI (Day 10) and recovery (Day 10–15). Continuous high-frequency (HF) -DBS (130 Hz, 150 μA, 90 μs) was applied during withdrawal (Day 16–30) or extinction sessions. CPP tests were conducted on days 16, 30, 40 during withdrawal session and several rats were used for proteomic analysis on day 30. Following the complete extinction, morphine-CPP was reinstated by a priming dose of morphine infusion (2 mg/kg). The open field and novel objective recognition tests were also performed to evaluate the DBS side effect on the locomotion and recognition memory. Continuous HF-DBS in the AI attenuated the expression of morphine-CPP post-withdrawal (Day 30), but morphine addictive behavior relapsed 10 days after the cessation of DBS (Day 40). Continuous HF-DBS reduced the period to full extinction of morphine-CPP and blocked morphine priming-induced recurrence of morphine addiction. HF-DBS in the AI had no obvious effect on the locomotor activity and novel objective recognition and did not cause anxiety-like behavior. In addition, our proteomic analysis identified eight morphine-regulated proteins in the AI and their expression levels were reversely changed by HF-DBS. Continuous HF-DBS in the bilateral anterior insula prevents the relapse of morphine place preference after withdrawal, facilitates its extinction, blocks the reinstatement induced by morphine priming and reverses the expression of morphine-regulated proteins. Our findings suggest that manipulation of insular activity by DBS could be a potential intervention to treat substance use disorder, although future research is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.