We report a novel non-invasive miRNA profile which distinguishes PCOS patients from healthy controls. The miRNA-target database may provide a novel understanding of PCOS and potential therapeutic targets.
Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder prevalent in females of reproductive age; insulin resistance (IR) is the major pathogenic driver. Pharmacology is a basic option for PCOS therapy; traditional Chinese medicine (TCM), as a significant part of complementary and alternative medicine, has a long history in the clinical management of PCOS. Cangfudaotan decoction (CFD) has been used clinically for gynaecological diseases especially PCOS. In this study, first, chemical components in CFD were clarified using UPLC-Q/TOF-MS analysis. Then, an animal model of PCOS was established, granular cells were also isolated from the rats with PCOS, and CFD was administrated at different dosages in PCOS rats and granular cells, to investigate the therapeutic effect and mechanisms of CFD for PCOS treatment. The result showed that CFD treatment is effective in PCOS rats and granulosa cells. CFD was able to improve IR, restore the serum hormone levels, inhibit the inflammatory cytokines in PCOS rat, and alleviate ovary morphological injury and apoptosis in PCOS rats. In granulosa cells of PCOS, the result showed that the cell viability was improved, and cell apoptosis was inhibited after CFD administration. Further experiments suggested that CDF improves IR, follicular development, cell apoptosis, and inflammatory microenvironment, and this was associated to the regulation of IGF-1-PI3K/Akt-Bax/Bcl-2 pathway-mediated gene expression. Given that CFD sufficiently suppresses insulin resistance and improves follicular development in this study, exploring these mechanisms might help to optimize the therapeutic treatment of CFD in PCOS patients.
Background: Ber, a Chinese herbal monomer has been reported to exhibit an array of pharmacological activities related to the lowering of blood glucose and the treatment of polycystic ovarian syndrome (PCOS). In the present study, we aimed to elucidate the effect of berberine (Ber) on a rat model of PCOS mediated via the PI3K/AKT signaling pathway. Methods: A PCOS animal model was induced with the administration of letrozole, and animals were then randomized into untreated or Ber and metformin hydrochloride treated groups. After administration, fasting blood glucose, HOMA-IR, fasting insulin (FINS) values, and the serum hormone levels were measured in PCOS rats. The ovarian tissues were stained with hematoxylin and eosin and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) for pathological and apoptosis examination. Moreover, the effect of Ber on the proliferation and apoptosis of granulosa cells was detected by CCK-8 assays and flow cytometry. The influence of Ber on granulosa cells was confirmed by blockade of the PI3K/ AKT pathway. In addition, the modulatory effect of the blockade of the PI3K/AKT pathway on the expression of related proteins was demonstrated via western blotting. Results: We found that Ber was able to restore the serum hormone levels and improve IR in a PCOS rat model. The morphological lesions and apoptosis of the ovary were also restored by the Ber treatment. Blockade of the PI3K/AKT pathway attenuated the influences of Ber on the proliferation and apoptosis of granulosa cells. Conclusion: The beneficial effects of Ber on PCOS included alterations of the serum hormone levels, recovery of morphological lesions in the ovary, improvement of insulin resistance, and cell viability and inhibition of apoptosis, which were all mediated through the PI3K/AKT pathway.
The crisis of male infertility is an issue of human reproductive health worldwide. The Wuzi Yanzong pill (WZYZP) is a traditional Chinese medicine prescription that shows efficacy in kidney reinforcement and essence benefit to ameliorate male reproductive dysfunctions. However, the pharmacological mechanisms of the WZYZP on male infertility have not been investigated and clarified clearly. This study was designed to investigate the effects of the WZYZP on spermatogenesis disorder and explore its underlying pharmacological mechanisms. First, based on a network pharmacology study, 39 bioactive compounds and 40 targets of the WZYZP associated with spermatogenesis disorder were obtained, forming a tight compound-target network. Molecular docking tests showed tight docking of these compounds with predicted targeted proteins. The protein–protein interaction (PPI) network identified TP53, TNF, AKT1, Bcl-XL, Bcl-2, and IκBA as hub targets. The Kyoto Encyclopedia of Genes and Genomes pathway network and pathway-target-compound network revealed that the apoptosis pathway was enriched by multiple signaling pathways and multiple targets, including the hub targets. Subsequently, the chemical characterization of WZYZP was analyzed using liquid chromatography to quadrupole/time-of-flight mass spectrometry, and 40 compounds in positive ion mode and 41 compounds in negative ion mode in the WZYZP were identified. Furthermore, based on the prediction of a network pharmacology study, a rat model of spermatogenesis disorder was established to evaluate the curative role and underlying mechanisms of the WZYZP. The results showed that WZYZP treatment improved rat sperm quality and attenuated serum hormone levels, reversed histopathological damage of the testis, reduced cell apoptosis in testis tissues, and ameliorated the expression of the predicted hub targets (TP53, TNF-α, AKT1, NFκB, and IκBA) and the apoptosis related proteins (Bcl-XL, Bcl-2, Bax, Caspase 3, and Caspase 9). These results indicated that the WZYZP has a protective effect on spermatogenesis disorder, suggesting that it could be an alternative choice for male infertility therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.