Bacterial cell wall (CW) and extracellular (EC) proteins are often involved in interactions with extracellular matrix (ECM) proteins such as laminin (LN) and fibronectin (FN), which play important roles in adhesion and invasion. In this study, an efficient method combining proteomic analysis and Far-Western blotting assays was developed to screen directly for bacterial surface proteins with LN- and FN-binding capacity. With this approach, fifteen potential LN-binding proteins and five potential FN-binding proteins were identified from Streptococcus suis serotype 2 (SS2) CW and EC proteins. Nine newly identified proteins, including oligopeptide-binding protein OppA precursor (OppA), elongation factor Tu (EF-Tu), enolase, lactate dehydrogenase (LDH), fructose-bisphosphate aldolase (FBA), 3-ketoacyl-ACP reductase (KAR), Gly ceraldehyde-3-phosphate dehydrogenase (GAPDH), Inosine 5′-monophosphate dehydrogenase (IMPDH), and amino acid ABC transporter permease (ABC) were cloned, expressed, purified and further confirmed by Far-Western blotting and ELISA. Five proteins (OppA, EF-Tu, enolase, LDH, and FBA) exhibited specifically binding activity to both human LN and human FN. Furthermore, seven important recombinant proteins were selected and identified to have the ability to bind Hep-2 cells by the indirect immunofluorescent assay. In addition, four recombinant proteins, and their corresponding polyclonal antibodies, were observed to decrease SS2 adhesion to Hep-2 cells, which indicates that these proteins contribute to the adherence of SS2 to host cell surface. Collectively, these results show that the approach described here represents a useful tool for investigating the host-pathogen interactions.
PSMD14 is a 19S-proteasome-associated deubiquitinating enzyme that facilitates protein degradation by the 20S proteasome core particle. Although accumulating evidence indicates that PSMD14 has emerged as a critical oncogenic factor by promoting tumor growth, the expression and function of PSMD14 in non-small cell lung cancer (NSCLC) remain largely unknown. In this study, we assessed PSMD14 expression and correlated it with clinical-pathological features and patient survival in NSCLC. We also determined the roles of PSMD14 in the regulation of lung adenocarcinoma (LUAD) cell growth. The results showed that PSMD14 expression was significantly upregulated in human NSCLC tissues compared with adjacent non-cancerous tissues. The PSMD14 level was associated with tumor size, lymph node invasion, and TNM stage in LUAD patients. Importantly, high PSMD14 expression was associated with poor overall survival (OS) and disease-free survival (DFS) in LUAD patients. Further, knockdown of PSMD14 significantly inhibited cell growth and caused G1 arrest and cellular senescence by increasing p21 stability in LUAD cells. PSMD14 knockdown also promoted cell apoptosis by increasing cleaved caspase-3 levels in H1299 cells. PSMD14 may serve as a potential prognostic marker and therapeutic target for LUAD patients.
Muramidase-released protein (MRP) of Streptococcus suis serotype 2 (SS2) is an important epidemic virulence marker with an unclear role in bacterial infection. To investigate the biologic functions of MRP, 3 mutants named Δmrp, Δmrp domain 1 (Δmrp-d1), and Δmrp domain 2 (Δmrp-d2) were constructed to assess the phenotypic changes between the parental strain and the mutant strains. The results indicated that MRP domain 1 (MRP-D1, the non-conserved region of MRP from a virulent strain, a.a. 242-596) played a critical role in adherence of SS2 to host cells, compared with MRP domain 1* (MRP-D1*, the non-conserved region of MRP from a low virulent strain, a.a. 239-598) or MRP domain 2 (MRP-D2, the conserved region of MRP, a.a. 848-1222). We found that MRP-D1 but not MRP-D2, could bind specifically to fibronectin (FN), factor H (FH), fibrinogen (FG), and immunoglobulin G (IgG). Additionally, we confirmed that mrp-d1 mutation significantly inhibited bacteremia and brain invasion in a mouse infection model. The mrp-d1 mutation also attenuated the intracellular survival of SS2 in RAW246.7 macrophages, shortened the growth ability in pig blood and decreased the virulence of SS2 in BALB/c mice. Furthermore, antiserum against MRP-D1 was found to dramatically impede SS2 survival in pig blood. Finally, immunization with recombinant MRP-D1 efficiently enhanced murine viability after SS2 challenge, indicating its potential use in vaccination strategies. Collectively, these results indicated that MRP-D1 is involved in SS2 virulence and eloquently demonstrate the function of MRP in pathogenesis of infection.
Factor H (FH), a regulatory protein of the complement system, can bind specifically to factor H-binding proteins (FHBPs) of Streptococcus suis serotype 2 (SS2), which contribute to evasion of host innate immune defenses. In the present study, we aimed to identify novel FHBPs and characterize the biological functions of FH in SS2 pathogenesis. Here, a method that combined proteomics and Far-western blotting was developed to identify the surface FHBPs of SS2. With this method, fourteen potential novel FHBPs were identified among SS2 surface proteins. We selected eight newly identified proteins and further confirmed their binding activity to FH. The binding of SS2 to immobilized FH decreased dramatically after pre-incubation with anti-FHBPs polyclonal antibodies. We showed for the first time that SS2 also interact specifically with mouse FH. Furthermore, we found that FH play an important role in adherence and invasion of SS2 to HEp-2 cells. Additionally, using a mouse model of intraperitoneal challenge, we confirmed that SS2 pre-incubated with FH enhanced bacteremia and brain invasion, compared with SS2 not pretreated with FH. Taken together, this study provides a useful method to characterize the host-bacteria interactions. These results first indicated that binding of FH to the cell surface improved the adherence and invasion of SS2 to HEp-2 cells, promoting SS2 to resist killing and leading to enhance virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.