A novel posture motion-based spatiotemporal fused graph convolutional network (PM-STGCN) is presented for skeleton-based action recognition. Existing methods on skeleton-based action recognition focus on independently calculating the joint information in single frame and motion information of joints between adjacent frames from the human body skeleton structure and then combine the classification results. However, that does not take into consideration of the complicated temporal and spatial relationship of the human body action sequence, so they are not very efficient in distinguishing similar actions. In this work, we enhance the ability of distinguishing similar actions by focusing on spatiotemporal fusion and adaptive feature extraction for high discrimination information. Firstly, the local posture motion-based attention (LPM-TAM) module is proposed for the purpose of suppressing the skeleton sequence data with a low amount of motion in the temporal domain, and the representation of motion posture features is concentrated. Besides, the local posture motion-based channel attention module (LPM-CAM) is introduced to make use of the strongly discriminative representation between different action classes of similarity. Finally, the posture motion-based spatiotemporal fusion (PM-STF) module is constructed which fuses the spatiotemporal skeleton data by filtering out the low-information sequence and enhances the posture motion features adaptively with high discrimination. Extensive experiments have been conducted, and the results demonstrate that the proposed model is superior to the commonly used action recognition methods. The designed human-robot interaction system based on action recognition has competitive performance compared with the speech interaction system.
The implementation of low-energy cooperative movements is one of the key technologies for the complex control of the movements of humanoid robots. A control method based on optimal parameters is adopted to optimize the energy consumption of the cooperative movements of two humanoid robots. A dynamic model that satisfies the cooperative movements is established, and the motion trajectory of two humanoid robots in the process of cooperative manipulation of objects is planned. By adopting the control method with optimal parameters, the parameters optimization of the energy consumption index function is performed and the stability judgment index of the robot in the movement process is satisfied. Finally, the effectiveness of the method is verified by simulations and experimentations.
Affection is regarded as a new solution to coordinate task allocation problems in the multirobot system. In this paper, we proposed an interpretable and computational affection model based on willingness and a new personality model named CASE to measure the heterogeneity of the robot. Emotion contagion model is used to calculate affective interaction among robots, and we use willingness to quantify the impact of affective factors on task allocation and as an important factor for task allocation. Task allocation algorithm is designed for affective robots, and simulate the application of the affection model at task allocation by a typical example. It displays the characteristics and novelty of affection in task allocation and to verify the correctness, effectiveness, and novelty of affective robot task allocation algorithm. The result of the simulation experiment shows that affective robots in multi-robot cooperation systems obtain a better solution than rational robots and express the state of the art of task allocation for effective robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.