The lattice mismatch between a monolayer of MoS2 and its Au(111) substrate induces a moiré superstructure. The local variation of the registry between sulfur and gold atoms at the interface leads to a periodic pattern of strongly and weakly interacting regions. In consequence, also the electronic bands show a spatial variation. We use scanning tunneling microscopy and spectroscopy (STM/STS), x-ray photoelectron spectroscopy (XPS) and x-ray standing wave (XSW) for a determination of the geometric and electronic structure. The experimental results are corroborated by density functional theory (DFT). We obtain the geometric structure of the supercell with high precision, identify the fraction of interfacial atoms that are strongly interacting with the substrate, and analyze the variation of the electronic structure in dependence of the location within the moiré unit cell and the nature of the band.
Abstract-In this paper, we describe a case study in a big metropolis, in which from data collected by digital sensors, we tried to understand mobility patterns of persons using buses and how this can generate knowledge to suggest interventions that are applied incrementally into the transportation network in use. We have first estimated an Origin-Destination matrix of buses users from datasets about the ticket validation and GPS positioning of buses. Then we represent the supply of buses with their routes through bus stops as a complex network, which allowed us to understand the bottlenecks of the current scenario and, in particular, applying community discovery techniques, to identify clusters that the service supply infrastructure has. Finally, from the superimposing of the flow of people represented in the OriginDestination matrix in the supply network, we exemplify how micro-interventions can be prospected by means of an example of the introduction of express routes.
Thin steel plates -with or without cutouts -are structural components largely used in several engineering applications as buildings, bridges, ships, airplanes and automobiles. However, if an axial compressive load is imposed to these panels an undesired instability phenomenon can occur: buckling. At a certain load magnitude the limit stress is reached and the plate suffers lateral displacements (out of plane) indicating the buckling occurrence. In plates an elastic buckling or an elastoplastic buckling can occur, depending on dimensional, constructive or operational aspects. Therefore, in the present work, the Constructal Design method was adopted to investigate the influence of the type and shape of the cutout in the plate buckling. To do so, by means the Finite Element Method (FEM), computational models were developed to simulate the elastic (linear) and elasto-plastic (nonlinear) plate buckling. Square and rectangular thin steel plates, simply supported in its four edges, with a centered cutout, were analyzed, being the objective function to maximize the buckling limit stress, avoiding the plate buckling occurrence. The square and rectangular plates have a ratio H/L (ratio between height and length of the plate) of 0.5 and 1.0, respectively. A value of 0.2 for the cutout volume fraction (ratio between the cutout volume and the total plate volume) was adopted for different types of cutout: diamond, longitudinal hexagonal, transversal hexagonal, elliptical, and rectangular. The cutout shape variations were produced by the H0/L0 degree of freedom (which relates the characteristic dimensions of the cutout). The results showed that the cutout shape variation has a fundamental influence in the plate buckling behavior, determining if the buckling is elastic or elasto-plastic, allowing the definition of a buckling stress limit curve for each studied cutout type. In addition, it was observed that the Constructal Design method conduct to the definition of optimal geometries, reaching buckling stress limit improvements around 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.