Oxidative stress is an important inducement in ovarian aging which results in fecundity decline in human and diverse animals. As a potent antioxidant, grape seed proanthocyanidin extract (GSPE) was investigated to ameliorate chicken ovarian aging in this study. Firstly, ovarian antioxidant capacity of hens at different ages (90, 150, 280, and 580 days old) was compared to elucidate its age-related changes. Subsequently, a D-gal-induced (2.5 mg/mL) aging ovarian model was established and the cultured ovarian tissues were treated with GSPE at 5 μg/mL for 72 h to evaluate the putative attenuating effects of GSPE on ovarian aging. Meanwhile, ovaries of D280 (young) and D580 (old) were treated with GSPE for 72 h in culture to verify the protective effects of GSPE on natural aging ovary. The results showed that GSPE could rescue the antioxidant capacity decline by increasing the antioxidase activities and their gene expression in either D-gal-induced or natural aging ovaries. Moreover, GSPE could maintain the homeostasis between cell proliferation and apoptosis in the D-gal-induced and natural aging ovaries, as well as alleviate D-gal-induced nucleus chromatin condensation in the ovarian granulosa cells. In conclusion, GSPE treatment can effectively prevent the ovarian aging process in hens by reducing oxidative stress.
After 480 days of age, high-producing hens are likely to be subject to ovarian aging, mainly due to oxidative stress. In this study, the amelioration of ovarian aging in chickens, using a plant antioxidant, lycopene, was investigated. The activity of the Nrf2/HO-1 pathway in chicken ovaries at different ages (90, 150, 280 and 580 days old) were compared to elucidate any age-related changes. Subsequently, the putative attenuating effect of lycopene (100 ng/mL) on ovarian aging was evaluated through the establishment of a D-gal-induced aging ovarian culture model. The cultured ovarian tissues of young (280 days) and old (580 days) hens were treated with lycopene for 72 h to verify protective effects of lycopene on naturally aged ovaries. Results showed that the Nrf2/HO-1 pathway was down-regulated during the ovarian aging process. Lycopene rescued the decreased antioxidant capacity by increasing the activities of antioxidases and activating the Nrf2/HO-1 pathway in both D-gal-induced and naturally aged ovaries. Moreover, lycopene promoted cell proliferation and inhibited apoptosis in both D-gal-induced and naturally aged ovaries. Lycopene also alleviated D-gal-induced mitochondrial damage in the living granulosa cells. In conclusion, lycopene can effectively ameliorate the oxidative stress in aging hen ovaries via the activation of the Nrf2/HO-1 pathway.
Cadmium is a toxic heavy metal that is widely distributed in the environment. As a critical process, oxidative toxicity mediates the morphological and functional damages in germ cells after cadmium exposure. In this study, the protective effect of quercetin on cadmium-induced oxidative toxicity was investigated in mouse testicular germ cells. After oral administration of cadmium chloride at 4 mg/kg body weight for 2 weeks, damages in spermatozoa occurred in the early stage of spermatogenesis. Cadmium treatment significantly decreased the testicular antioxidant system, including decreases in the glutathione (GSH) level, superoxide dismutase (SOD), and GSH peroxidase (GSH-Px) activities. Moreover, exposure to cadmium resulted in an increase of hydrogen peroxide production and lipid peroxidation in testes. In addition, cadmium provoked germ cell apoptosis by upregulating expression of the proapoptotic proteins Bax and caspase-3 and downregulating expression of the antiapoptotic protein Bcl-XL. However, combined administration of a common flavonoid quercetin at 75 mg/kg body weight significantly attenuated cadmium-induced germ cell apoptosis by suppressing the hydrogen peroxide production and lipid peroxidation in testicular tissue. Simultaneous supplementation of quercetin markedly restored the decrease in GSH level and SOD and GSH-Px activities elicited by cadmium treatment. Additionally, quercetin protected germ cells from cadmium-induced apoptosis by downregulating the expression of Bax and caspase-3 and upregulating Bcl-XL expression. These results indicate that quercetin, due to its antioxidative and antiapoptotic characters, may manifest effective protective action against cadmium-induced oxidative toxicity in mouse testicular germ cells. Anat Rec, 294:520-526, 2011. V V C 2010 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.