Six isoproteic diets were designated to evaluate the effects of dietary lipid levels (from 70 to 270 g/kg) on the growth performance, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Brachymystax lenok (average initial weight 0.54 ± 0.04 g). Each diet was fed to triplicate tanks (30 fish per tank) in an indoor closed recirculating system for 9 weeks. Final body weight and weight gain were highest in fish fed 190 g/kg diet and lowest in fish fed the 70 g/kg diet. Specific growth rate of fish fed with 190 g/kg diet was significantly higher than those fed with 70 and 270 g/kg diets (p < .05). Protein efficiency ratio of fish fed with 70 g/kg diet was significantly lower than the 110-230 g/kg treatments and was not significantly different from the 270 g/kg treatment. Fish fed with 270 g/kg diet had significantly higher hepatosomatic index and viscerosomatic index than those fed with 70-190 g/kg diets (p < .05). Intraperitoneal fat ratio and the whole-body lipid content had a trend to increase with increase in dietary lipid level. Muscle crude lipid content increased up to 190 g/kg with increase in dietary lipid level. Lipid retention decreased with increase in dietary lipid level, while no significant differences in protein intake and retention levels were observed in fish among all treatments. Lipase activity of the mixture of pyloric caeca and foregut in fish fed 190 and 230 g/kg diets was significantly higher than those fed 70 and 110 g/kg diets. Midgut and hindgut lipase activities of fish were significantly higher than those fed the 190 and 230 g/kg diets. In conclusion, based on the second-order polynomial model of WG and FCR, this study suggested that 173.8-195.0 g/kg dietary lipid levels were appropriated for B. lenok. K E Y W O R D S fish nutrition, lipid requirement, Manchurian trout, metabolism How to cite this article: Chang J, Niu HX, Jia YD, Li SG, Xu GF. Effects of dietary lipid levels on growth, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Manchurian trout, Brachymystax lenok (Pallas). Aquacult Nutr. 2018;24:694-701. https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.