Dimorphic sexual systems have likely evolved convergently in L. carolinianum. In contrast to previous studies, dimorphism is not perfectly associated with polyploidy. Although our sample from the Yucatán was both tetraploid and dimorphic, all populations in Hawaii were diploid regardless of sexual system. Ongoing phylogeographic and mating system studies will contribute to our understanding of reproductive evolution in this widespread, polymorphic species.
Licensing of eukaryotic origins of replication requires DNA loading of two copies of the Mcm2-7 replicative helicase to form a head-to-head double-hexamer, ensuring activated helicases depart the origin bidirectionally. To understand the formation and importance of this double-hexamer, we identified mutations in a conserved and essential Mcm4 motif that permit loading of two Mcm2-7 complexes but are defective for double-hexamer formation. Single-molecule studies show mutant Mcm2-7 forms initial hexamer-hexamer interactions; however, the resulting complex is unstable. Kinetic analyses of wild-type and mutant Mcm2-7 reveal a limited time window for double-hexamer formation following second Mcm2-7 association, suggesting that this process is facilitated. Double-hexamer formation is required for extensive origin DNA unwinding but not initial DNA melting or recruitment of helicase-activation proteins (Cdc45, GINS, Mcm10). Our findings elucidate dynamic mechanisms of origin licensing, and identify the transition between initial DNA melting and extensive unwinding as the first initiation event requiring double-hexamer formation.
Premise
As Baker’s law suggests, the successful colonization of oceanic islands is often associated with uniparental reproduction (self‐fertility), but the high incidence of dimorphism (dioecy, gynodioecy) on islands complicates this idea. Lycium carolinianum is widespread, occurring on the North American mainland and the Hawaiian Islands. We examined Baker's ideas for mainland and island populations of L. carolinianum and examined inbreeding depression as a possible contributor to the evolution of gynodioecy on Maui.
Methods
Controlled crosses were conducted in two mainland populations and two populations in Hawaii. Treatments included self and cross pollination, unmanipulated controls, and autogamy/agamospermy. Alleles from the self‐incompatibility S‐RNase gene were isolated and compared between mainland and island populations. Given self‐compatibility in Hawaii, we germinated seeds from self‐ and cross‐ treatments and estimated inbreeding depression using seven traits and a measure of cumulative fitness.
Results
Mainland populations of Lycium carolinianum are predominately self‐incompatible with some polymorphism for self‐fertility, whereas Hawaiian populations are self‐compatible. Concordantly, S‐RNase allelic diversity is reduced in Hawaii compared to the mainland. Hawaiian populations also exhibit significant inbreeding depression.
Conclusions
Self‐compatibility in Hawaii and individual variation in self‐fertility in mainland populations suggests that a colonization filter promoting uniparental reproduction may be acting in this system. Comparison of S‐RNase variation suggests a collapse of allelic diversity and heterozygosity at the S‐RNase locus in Hawaii, which likely contributed to mate limitation upon arrival to the Pacific. Inbreeding depression coupled with autonomous self‐fertilization may have led to the evolution of gynodioecy on Maui.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.