Further information on publisher's website:http://dx.doi.org/10.1016/j.neuropsychologia. 2013.11.019 Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in Neuropsychologia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made to this work since it was submitted for publication. A denitive version was subsequently published in Neuropsychologia, 55, 2014Neuropsychologia, 55, , 10.1016Neuropsychologia, 55, /j.neuropsychologia.2013 Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract: Patient DF, an extensively-tested woman with visual form agnosia from ventral-stream damage, is able to calibrate her handgrip using visual information about object geometry, despite being unable to distinguish among objects of different geometry. Using evidence from a range of sources, including functional MRI, we have proposed that she does this through a functionally intact visuomotor system housed within the dorsal stream of the posterior parietal lobe. More recently, however, Schenk (2012) has argued that DF performs well in visually guided grasping, not through spared and functioning visuomotor networks in the dorsal stream, but because trial-by-trial haptic feedback is available in such tasks, whereas it is not in visual perceptual tasks. We have tested this proposal directly, by presenting DF with a task in which she had to reach out to grasp a virtual object (seen in a mirror) while actually grasping a hidden object that remained constant throughout. According to Schenk, DF should be quite unable to calibrate her grip in such a task. We report here that in fact that she calibrates her grip perfectly well, and indeed within the range of healthy controls. We also found that, contrary to Schenk's hypothesis, DF's inability to distinguish shapes perceptually is not improved by providing haptic feedback. We also found in a separate experiment that the stimuli used in Schenk's task were quite unsuitable for testing perception/action dissociations in DF, since they allowed her to use overall size as a cue to object width. We propose that simple tactile contact with an object is needed for the visuomotor dorsal stream to be engaged, and accordingly enables DF to execute visually guided grasping successfully. This need for actions to have a tangible endpoint provides an important new modificati...
Certain blind individuals have learned to interpret the echoes of self-generated sounds to perceive the structure of objects in their environment. The current work examined how far the influence of this unique form of sensory substitution extends by testing whether echolocation-induced representations of object size could influence weight perception. A small group of echolocation experts made tongue clicks or finger snaps toward cubes of varying sizes and weights before lifting them. These echolocators experienced a robust size-weight illusion. This experiment provides the first demonstration of a sensory substitution technique whereby the substituted sense influences the conscious perception through an intact sense.
Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. “Natural” prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object (“haptics-based object information”) once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets (“grip scaling”) when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF’s grip scaling slopes. In the second experiment, we examined an “unnatural” grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our laboratory in the past. Compared to natural grasps, removing tactile feedback increased RT, slowed the velocity of the reach, reduced in-flight grip aperture, increased the slopes relating grip aperture to target width, and reduced the final grip aperture (FGA). All of these effects were also observed in the real time-pantomime grasping task. These effects seem to be independent of those that arise from using the mirror in general as we also compared grasps directed towards virtual targets to those directed at real ones viewed directly through a pane of glass. These comparisons showed that the grasps directed at virtual targets increased grip aperture, slowed the velocity of the reach, and reduced the slopes relating grip aperture to the widths of the target. Thus, using the mirror has real consequences on grasp kinematics, reflecting the importance of task-relevant sources of online visual information for the programming and updating of natural prehensile movements. Taken together, these results provide compelling support for the view that removing terminal tactile feedbac...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.