The transcription factor Oct4 is a core component of molecular cocktails inducing pluripotent stem cells (iPSCs), while other members of the POU family cannot replace Oct4 with comparable efficiency. Rather, group III POU factors such as Oct6 induce neural lineages. Here, we sought to identify molecular features determining the differential DNA‐binding and reprogramming activity of Oct4 and Oct6. In enhancers of pluripotency genes, Oct4 cooperates with Sox2 on heterodimeric SoxOct elements. By re‐analyzing ChIP‐Seq data and performing dimerization assays, we found that Oct6 homodimerizes on palindromic OctOct more cooperatively and more stably than Oct4. Using structural and biochemical analyses, we identified a single amino acid directing binding to the respective DNA elements. A change in this amino acid decreases the ability of Oct4 to generate iPSCs, while the reverse mutation in Oct6 does not augment its reprogramming activity. Yet, with two additional amino acid exchanges, Oct6 acquires the ability to generate iPSCs and maintain pluripotency. Together, we demonstrate that cell type‐specific POU factor function is determined by select residues that affect DNA‐dependent dimerization.
Highlights d SKM can induce pluripotency in somatic cells in the absence of exogenous Oct4 d SM coexpression activates the retroviral silencing machinery in somatic cells d Oct4 overexpression drives massive off-target gene activation during reprogramming d OSKM, but not SKM, iPSCs show abnormal imprinting and differentiation patterns
Transcription factor (TF) proteins bind to DNA to regulate gene expression. Normally, accessibility to DNA is required for their function. However, in the nucleus, the DNA is often inaccessible, wrapped around histone proteins in nucleosomes forming the chromatin. Pioneer TFs are thought to induce chromatin opening by recognizing their DNA binding sites on nucleosomes. For example, Oct4, a master regulator and inducer of stem cell pluripotency, binds to DNA in nucleosomes in a sequence-specific manner. Here, we reveal the structural dynamics of nucleosomes that mediate Oct4 binding from molecular dynamics simulations. Nucleosome flexibility and the amplitude of nucleosome motions such as breathing and twisting are enhanced in nucleosomes with multiple TF binding sites. Moreover, the regions around the binding sites display higher local structural flexibility. Probing different structures of Oct4-nucleosome complexes, we show that alternative configurations in which Oct4 recognizes partial binding sites display stable TF-DNA interactions similar to those observed in complexes with free DNA and compatible with the DNA curvature and DNA-histone interactions. Therefore, we propose a structural basis for nucleosome recognition by a pioneer TF that is essential for understanding how chromatin is unraveled during cell fate conversions.
The transcription factors OCT4 and SOX2 are required for generating induced pluripotent stem cells (iPSCs) and for maintaining embryonic stem cells (ESCs). OCT4 and SOX2 associate and bind to DNA in different configurations depending on the arrangement of their individual DNA binding elements. Here we have investigated the role of the different OCT4-SOX2-DNA assemblies in regulating and inducing pluripotency. To this end, we have generated SOX2 mutants that interfere with specific OCT4-SOX2 heterodimer configurations and assessed their ability to generate iPSCs and to rescue ESC self-renewal. Our results demonstrate that the OCT4-SOX2 configuration that dimerizes on a Hoxb1-like composite, a canonical element with juxtaposed individual binding sites, plays a more critical role in the induction and maintenance of pluripotency than any other OCT4-SOX2 configuration. Overall, the results of this study provide new insight into the protein interactions required to establish a de novo pluripotent network and to maintain a true pluripotent cell fate.
Previous reports showed that PCPH is mutated or deregulated in some human tumors, suggesting its participation in malignant progression. Immunohistochemical analyses showed that PCPH is not expressed in normal prostate, but its expression increases along cancer progression stages, being detectable in benign prostatic hyperplasia, highly expressed in prostatic intraepithelial neoplasia, and remaining at high levels in prostate carcinoma. Experiments designed to investigate the contribution of PCPH to the malignant phenotype of prostate cancer cells showed that PCPH overexpression in PC-3 cells, which express nearly undetectable PCPH levels, increased collagen I expression and enhanced invasiveness, whereas shRNA-mediated PCPH knockdown in LNCaP cells, which express high PCPH levels, down-regulated collagen I expression and decreased invasiveness. PCPH regulated invasiveness and collagen I expression by a mechanism involving protein kinase CD (PKCD): (a) PCPH knockdown in LNCaP cells decreased PKCD levels relative to control cells; (b) PKCD knockdown in LNCaP cells recapitulated all changes caused by PCPH knockdown; and (c) forced expression of PKCD in cells with knocked down PCPH reverted all changes provoked by PCPH down-regulation and rescued the original phenotype of LNCaP cells. These results strongly suggested that the expression level and/or mutational status of PCPH contributes to determine the invasiveness of prostate cancer cells through a mechanism involving PKCD. Data from immunohistochemical analyses in serial sections of normal, premalignant, and malignant prostate specimens underscored the clinical significance of our findings by showing remarkably similar patterns of expression for PCPH and PKCD, thus strongly suggesting their likely coregulation in human tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.