We are especially grateful to Walter Short who first envisioned and developed the WinDS and ReEDS models. We also thank the NREL analysts who provided input on the technology costs, assumptions, and methodologies in ReEDS, including
AcknowledgmentsWe gratefully acknowledge the many people whose efforts contributed to this report. The ReEDS modeling and analysis team at the National Renewable Energy Laboratory (NREL) was active in developing and testing the ReEDS model v.2018. We also acknowledge the vast number of current and past NREL employees on and beyond the ReEDS team who have participated in data and model development, testing, and analysis. We are especially grateful to Walter Short who first envisioned and developed the Wind Deployment System (WinDS) and ReEDS models. We thank for their comments and improvements on successive versions of this report. Finally, we are grateful to all those who helped sponsor ReEDS model development and analysis, particularly supporters from the U.S. Department of Energy (DOE) but also others who have funded our work over the years.
Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov. Cover image from iStock 452033401. NREL prints on paper that contains recycled content.
Background
Individuals with Parkinson’s disease (PD) often experience substantial impairment of swallow control, and are typically unaware of the presence or severity of their impairments suggesting that these individuals may also experience airway sensory deficits. However, the degree to which impaired swallow function in PD may relate to airway sensory deficits has yet to be formally tested.
Objective
The purpose of this study was to examine whether airway sensory function is associated with swallow impairment in PD.
Methods
Eighteen PD participants and 18 healthy controls participated in this study and underwent endoscopic assessment of airway somatosensory function, endoscopic assessment of swallow function, and clinical ratings of swallow and disease severity.
Results
PD participants exhibited abnormal airway somatosensory function and greater swallow impairment compared with healthy controls. Swallow and sensory deficits in PD were correlated with disease severity. Moreover, PD participants reported similar self-rated swallow function as healthy controls, and swallow deficits were correlated with sensory function suggesting an association between impaired sensory function and poor self-awareness of swallow deficits in PD.
Conclusions
These results suggest that control of swallow is influenced by airway somatosensory function, that swallow-related deficits in PD are related to abnormal somatosensation, and that swallow and airway sensory function may degrade as a function of disease severity. Therefore, the basal ganglia and related neural networks may play an important role to integrate airway sensory input for swallow-related motor control. Furthermore, the airway deficits observed in PD suggest a disintegration of swallow-related sensory and motor control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.