Precision radiotherapy needs to manage organ movements to prevent critical organ injury. The purpose of this study is to examine the feasibility of motion control of the lung by suppressing respiratory motion. The non-invasive high frequency oscillatory ventilation (NIHFOV) is a technique commonly used in the protection of lung for patients with acute lung disease. By using a very high respiratory frequency and a low tidal volume, NIHFOV allows gas exchange, maintains a constant mean airway pressure and minimizes the respiratory movements. We tested healthy volunteers NIHFOV to explore the optimal operational parameter setting and the best possible motion suppression achievable. This study was conducted with the approval of Institutional Review Boards of the Wuwei Cancer hospital (approval number: 2021-39) and carried out in accordance with Declaration of Helsinki. The study comprises two parts. Twenty three healthy volunteers participated in the first part of the study. They had 7 sessions of training with the NIHFOV. The duration of uninterrupted, continuous breathing under the NIHFOV and the optimal operational machine settings were defined. Eight healthy volunteers took part in the second part of the study and underwent 4-dimensional CT (4DCT) scanning with and without NIHFOV. Their respiratory waveform under free breathing (FB) and NIHFOV were recorded. The maximum range of motion of the diaphragm from the two scannings was compared, and the variation of bilateral lung volume was obtained to evaluate the impact of NIHFOV technique on lung volume. The following data were collected: comfort score, transcutaneous partial pressure of oxygen (PtcO2), transcutaneous partial pressure of carbon dioxide (PtcCO2), and pulse rate. Data with and without NIHFOV were compared to evaluate its safety, physiological impacts and effect of lung movement suppression. All the volunteers completed the training sessions eventlessly, demonstrating a good tolerability of the procedure. The median NIHFOV-on time was 32 min (22–45 min), and the maximum range of motion in the cephalic-caudal direction was significantly reduced on NIHFOV compared with FB (1.8 ± 0.8 cm vs 0.3 ± 0.1 cm, t = − 3.650, P = 0.003); the median range of motion was only 0.3 ± 0.1 cm on NIHFOV with a good reproducibility. The variation coefficient under NIHFOV of the right lung volume was 2.4% and the left lung volume was 9.2%. The PtcO2 and PtcCO2 were constantly monitored during NIHFOV. The medium PtcCO2 under NIHFOV increased lightly by 4.1 mmHg (interquartile range [IQR], 4–6 mmHg) compared with FB (t = 17.676, P < 0.001). No hypercapnia was found, PtcO2 increased significantly in all volunteers during NIHFOV (t = 25.453, P < 0.001). There was no significant difference in pulse rate between the two data sets (t = 1.257, P = 0.233). NIHFOV is easy to master in healthy volunteers to minimize respiratory movement with good tolerability and reproducibility. It is a feasible approach for lung motion control and could potentially be applied in accurate radiotherapy including carbon-ion radiotherapy through suppression of respiratory movement.
To many hospitals' management as well as to patients, the nursing service is one of the most important aspects. Many diseases like sugar, blood pressure, urine passage, and gas are a little bit dangerous to handle by patients themselves. The earlier stage models are unable to give good services to patients; therefore, an advanced JHE: Effect of 1 + N extended nursing service is necessary to crossover the above limitations. Colostomy and colorectal cancers are very dangerous syndromes thus, disease monitoring is so difficult. In this research work, an extended JHE: Effect of 1 + N extended nursing service modeling is discussed with experimental modeling. Apart from conventional nursing care provided by the observation group, it was given online training as well as service providing. Self-efficacy and self-care competence were assessed in both groups 6 months after the discharge. Quality of life and mental health were also assessed. Besides, their dimensional and total self-care ability scores, and the observation group’s self-efficacy ratings were substantially higher than those of the control group ( P 0.05) after the intervention. It was observed that the intervention group’s 6-month adjustment to the stoma was statistically more favorable than the control group’s ( P 0.001), and only the intervention group showed a significantly major change ( P 0.001) between their two evaluations. This proposed methodology can improve the accuracy rate by 93.23%, and succussive treatment rate of 92.14% had been attained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.