A complete and accurate genome sequence provides a fundamental tool for functional genomics and DNA-informed breeding. Here, we assemble a high-quality genome (contig N50 of 6.99 Mb) of the apple anther-derived homozygous line HFTH1, including 22 telomere sequences, using a combination of PacBio single-molecule real-time (SMRT) sequencing, chromosome conformation capture (Hi-C) sequencing, and optical mapping. In comparison to the Golden Delicious reference genome, we identify 18,047 deletions, 12,101 insertions and 14 large inversions. We reveal that these extensive genomic variations are largely attributable to activity of transposable elements. Interestingly, we find that a long terminal repeat (LTR) retrotransposon insertion upstream of MdMYB1 , a core transcriptional activator of anthocyanin biosynthesis, is associated with red-skinned phenotype. This finding provides insights into the molecular mechanisms underlying red fruit coloration, and highlights the utility of this high-quality genome assembly in deciphering agriculturally important trait in apple.
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13 CO 2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13 C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13 C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13 CO 2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. The ISME Journal (2011) 5, 1226-1236; doi:10.1038/ismej.2011.5; published online 17 February 2011Subject Category: microbial ecology and functional diversity of natural habitats
Developmental studies of the prostate have established that ductal morphogenesis, epithelial cytodifferentiation, and proliferation/apoptosis are regulated by androgens acting through stromal androgen receptor (AR). Here, we found mice lacking epithelial AR within the mature prostate (pes-ARKO) developed prostate tissue that was less differentiated and hyperproliferative relative to WT littermates. Epithelial AR protein was significantly decreased in 6-week-old mice and was nearly absent by ≥24 weeks of age. Circulating levels of testosterone, external genitalia, or fertility were not altered in pes-ARKO mice. A significant ( P < 0.05) increase in bromo-deoxyuridine-positive epithelia was observed in ventral and dorsal-lateral prostates of pes-ARKO mice at 24 weeks of age. Less differentiation was observed as indicated by decreased epithelial height and glandular infolding through 24 weeks of age, differentiation markers probasin, PSP-94, and Nkx3.1 were sig nificantly decreased, and epithelial sloughing and luminal cell apoptosis increased from 6 to 32 weeks of age in pes-ARKO mice. Gain of function occurred by crossing pes-ARKO to the T857A transgenic mice containing constitutively activated AR. In T857A-pes-ARKO mice prostates were of normal size, contained glandular infoldings, and maintained high secretory epithelium, and the appropriate prostatic epithelial proliferation was restored. Collectively, these results suggest that prostatic epithelial AR plays an important role in the homeostasis of the prostate gland. These data support the hypothesis that epithelial AR controls prostate growth by suppressing epithelial proliferation in the mature gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.