A simple method was developed and validated for the simultaneous determination of metalaxyl, cyazofamid and the cyazofamid metabolite 4-chloro-5-p-tolylimidazole-2-carbonitrile (CCIM) by liquid chromatography with tandem mass spectrometry. The three target compounds were extracted from tobacco and soil with acetonitrile containing 0.1% acetic acid, and the extracts were purified using octadecylsilane. The proposed method showed satisfactory linearity (R ≥ 0.9985) for the target compounds. The limits of detection for metalaxyl, cyazofamid and CCIM were 0.006, 0.06 and 0.06 mg/kg in soil and green tobacco leaves and 0.03, 0.3 and 0.3 mg/kg in cured tobacco leaves, respectively. The limits of quantification for metalaxyl, cyazofamid and CCIM were 0.02, 0.2 and 0.2 mg/kg in soil and green tobacco leaves and 0.1, 1 and 1 mg/kg in cured tobacco leaves, respectively. The average recoveries from soil and tobacco were 72.91-98.40% for metalaxyl, 76.73-105.80% for cyazofamid and 74.48-106.45% for CCIM. The relative standard deviation range was 1.23-6.99%. The developed method was successfully applied to analysis of residues of metalaxyl, cyazofamid and CCIM in real soil and tobacco samples. The results indicated that the established method could meet the requirement for the analysis of trace amounts of all three analytes in soil and tobacco.
Determination of the polar characteristics of dinotefuran and metabolite residues in orange matrixes (orange pulp, orange peel, and whole orange) is difficult. Thus, the purpose of the present study was to develop an extraction method for the determination of dinotefuran and its metabolites in oranges by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Matrix suppression effects were observed for all analytes in the orange matrixes. The proposed method displayed satisfactory linearity (R2 ≥ 0.9856) for the target molecules. The LODs were 0.03-0.10 mg/kg, whereas LOQs were 0.08-0.40 mg/kg for dinotefuran and its metabolites. Recoveries were 79.1-98.7% with RSD values <20% for all analytes in the orange matrixes. The proposed method was used to authenticate the samples and dinotefuran residues observed in field-incurred orange matrixes. The results of the proposed method could help the Chinese government establish maximum residue limits for dinotefuran in oranges and promote the safe and proper use of dinotefuran dosages in orange trees.
A QuEChERS-liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of pyraclostrobin, thiophanate-methyl and its metabolite carbendazim in soil and citrus. The samples were extracted with methanol or acetonitrile, purified by primary secondary amine (PSA), then separated by LC, detected in multiple reaction monitoring (MRM) mass spectrometry mode via positive electrospray ionization. The analytes were quantified by matrix-matched standard solutions with external standard method. The limits of quantification (LOQs) of pyraclostrobin, thiophanate-methyl and carbendazim in different matrices were 5.8-7.0 μg/kg, 9.3-14.1 μg/kg and 2.1-2.6 μg/kg, respectively. For all the samples, the spiked recoveries ranged from 75.48% to 109.18%, and the relative standard deviations (RSDs) were 0.60%-5.11% (=5). The method is quick, easy, effective, sensitive and accurate. The matrix-matched calibration solutions can efficiently compensate matrix effects of the pyraclostrobin, thiophanate-methyl and carbendazim in LC-MS/MS analysis. The established method can be applied to the residue analysis of the real samples of soil, citrus peel, citrus pulp and citrus fruits.
In this study, a modified quick, easy, cheap, effective, rugged and safe method coupled with gas chromatography with electron capture detection was established to determine dimethachlon residues in paddy soil, rice husk, rice straw, brown rice and cooked rice. The limits of quantification of dimethachlon were 0.01 mg/kg for paddy soil, brown rice and cooked rice and 0.02 mg/kg for rice straw and rice husk. The mean recoveries were in the range 78.59-104.7% with relative standard deviation values of <10% for dimethachlon in the five matrices. For field experiments, the final residues of dimethachlon in paddy soil were < 0.05 mg/kg and were < 1.21 mg/kg in rice straw from six sites. The final residues of dimethachlon in the brown rice at 21, 28 and 35 days after spraying from six sites were 0.08-7.58 mg/kg, and 0.16-30.1 mg/kg in rice husk. Our six test sites covered the main rice-producing areas of China. The routine rice cooking process of a Chinese family could apparently increase the removal of dimethachlon in rice compared with brown rice, and the reduction ratios were > 96%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.