The International Council on Harmonization (ICH) S7B and E14 regulatory guidelines are sensitive but not specific for predicting which drugs are pro-arrhythmic. In response, the Comprehensive In Vitro Proarrhythmia Assay (CiPA) was proposed that integrates multi-ion channel pharmacology data in vitro into a human cardiomyocyte model in silico for proarrhythmia risk assessment. Previously, we reported the model optimization and proarrhythmia metric selection based on CiPA training drugs. In this study, we report the application of the prespecified model and metric to independent CiPA validation drugs. Over two validation datasets, the CiPA model performance meets all pre-specified measures for ranking and classifying validation drugs, and outperforms alternatives, despite some in vitro data differences between the two datasets due to different experimental conditions and quality control procedures. This suggests that the current CiPA model/metric may be fit for regulatory use, and standardization of experimental protocols and quality control criteria could increase the model prediction accuracy even further.
Background and AimCirculating microRNAs (miRNAs) are potential biomarkers for cancer detection; however, little is known about their prognostic impact on oesophageal squamous cell carcinoma (ESCC). The current study aims to uncover novel miRNAs for prognostic biomarkers in ESCC patients.Patients and MethodsWe initially screened the expression of 754 serum miRNAs using TaqMan Low Density Array in two pooled samples respectively from 28 ESCC and 28 normal controls. Markedly upregulated miRNAs in ESCC and some miRNAs reported to be differently expressed in ESCC tissue were then validated individually by RT-qPCR in another 83 patients and 83 controls arranged in two phases. The changes of the selected miRNAs during the esophagectomy and their prognostic value were examined.ResultsSeven serum miRNAs were found to be significantly higher in ESCC than in controls; namely, miR-25, miR-100, miR-193-3p, miR-194, miR-223, miR-337-5p and miR-483-5p (P<0.0001), and the area under the receiver-operating-characteristic (ROC) curve (AUC) for the seven-miRNA panel was 0.83 (95% CI 0.75–0.90). Most of these miRNAs declined markedly in postoperative samples versus preoperative samples (P<0.05). Moreover, high level of miR-25 was significantly correlated with shorter overall survival in patients (P = 0.027). Cox regression analysis identified lymph node metastasis, miR-25 and miR-100 as the independent risk factors for overall survival (hazard ratio (HR) 2.98 [1.36–6.55], P = 0.006; HR 3.84 [1.02–14.41], P = 0.029; HR 4.18 [1.21–14.50], P = 0.024, respectively).ConclusionThe seven serum miRNAs could potentially serve as novel biomarkers for ESCC; moreover, specific miRNAs such as miR-25 and miR-100 can predict poor survival in ESCC.
Horses living in areas where ticks (Ixodes scapularis) abound are sometimes exposed to multiple pathogens. Analyses for specific recombinant borrelial antibodies using an ELISA can help separate horses with borreliosis from those with granulocytic ehrlichiosis, even when antibodies to both etiologic agents are detected in serum samples. Analysis using immunoblots is sensitive, and along with ELISA or IFA procedures, is suitable for confirming a clinical diagnosis of each disease.
The incidence and mortality rate of renal cell carcinoma (RCC) have been significantly increasing; however, the mechanisms involved in RCC development and progression are unclear. In this study, we found that miR-28-5p was decreased in RCC tumor specimens and several renal carcinoma cell lines. By using a combination of luciferase reporter assays and western blotting, we identified RAP1B, a Ras-related small GTP-binding oncoprotein implicated in a variety of tumors, as a direct target of miR-28-5p in RCC. The RAP1B protein level was increased in RCC tumor specimens and renal carcinoma cell lines, and this was inversely correlated with miR-28-5p expression. In vitro gain-of-function and loss-of-function studies in human renal carcinoma cell lines, demonstrated that miR-28-5p suppressed cell proliferation and migration by directly inhibiting RAP1B, and this effect was reversed by co-transfection with RAP1B. In addition, the stable overexpression of miR-28-5p inhibited tumor cell proliferation in vivo. This newly identified miR-28-5p/RAP1B axis provides a novel mechanism for the pathogenesis of RCC, and molecules in this axis may serve as potential biomarkers and therapeutic targets for RCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.