We present a novel approach for identifying approximate role-symmetric Nash equilibria in large simulation-based games. Our method uses neural networks to learn a mapping from mixed-strategy profiles to deviation payoffs—the expected values of playing pure-strategy deviations from those profiles. This learning can generalize from data about a tiny fraction of a game’s outcomes, permitting tractable analysis of exponentially large normal-form games. We give a procedure for iteratively refining the learned model with new data produced by sampling in the neighborhood of each candidate Nash equilibrium. Relative to the existing state of the art, deviation payoff learning dramatically simplifies the task of computing equilibria and more effectively addresses player asymmetries. We demonstrate empirically that deviation payoff learning identifies better approximate equilibria than previous methods and can handle more difficult settings, including games with many more players, strategies, and roles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.