The ongoing global pandemic caused by the human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions of people and claimed hundreds of thousands of lives. The absence of approved therapeutics to combat this disease threatens the health of all persons on earth and could cause catastrophic damage to society. New drugs are therefore urgently required to bring relief to people everywhere. In addition to repurposing existing drugs, natural products provide an interesting alternative due to their widespread use in all cultures of the world. In this study, alkaloids from Cryptolepis sanguinolenta have been investigated for their ability to inhibit two of the main proteins in SARS-CoV-2, the main protease and the RNA-dependent RNA polymerase, using in silico methods. Molecular docking was used to assess binding potential of the alkaloids to the viral proteins whereas molecular dynamics was used to evaluate stability of the binding event. The results of the study indicate that all 13 alkaloids bind strongly to the main protease and RNA-dependent RNA polymerase with binding energies ranging from -6.7 to -10.6 kcal/mol. In particular, cryptomisrine, cryptospirolepine, cryptoquindoline, and biscryptolepine exhibited very strong inhibitory potential towards both proteins. Results from the molecular dynamics study revealed that a stable protein-ligand complex is formed upon binding. Alkaloids from Cryptolepis sanguinolenta therefore represent a promising class of compounds that could serve as lead compounds in the search for a cure for the corona virus disease.
Vitex doniana (West African plum or black plum) is a plant with varying phytoconstituents and biological activities across different countries. In this study, essential oils extracted from the leaves and fruits of Vitex doniana cultivated in Ghana were investigated for their antimicrobial and antioxidant activities. The antioxidant actions of the essential oils were determined using hydrogen peroxide (H2O2), phosphomolybdenum, thiobarbituric acid reactive substances (TBARS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. For both essential oils, the total antioxidant capacities ranged from 44 to 68 µg/g AAE, the IC50 values for H2O2 scavenging activity were between 87 and 242 µg/mL, whereas that for DPPH assay were between 322 and 599 µg/mL. The IC50 for the TBARS assay for both essential oils also ranged from 247 to 414 µg/mL. The antimicrobial activities of the essential oils were investigated using the broth dilution assay. The minimum inhibition concentration for the essential oils ranged from 12.5 to 50 mg/mL. Biofilm inhibitory activity was also evaluated for both essential oils, and the fruit essential oil showed a half-maximal inhibition of biofilm formation (BIC50) at 44.40 ± 0.6 mg/mL, whereas the BIC50 value of the leaf essential oil was 109.1 ± 0.9 mg/mL. The fruit essential oil was superior to the leaf essential oil in inhibiting the secretion of pyoverdine. Molecular docking analyses suggested that methyl cinnamate, ethyl cinnamate, p-menth-4-en-3-one, trans-α-ionone, benzyl benzoate, isobutyl cinnamate, and folic acid likely interacted with LasR and algC proteins, and hence, contributed to the inhibition of biofilm formation and pyoverdine secretion. Essential oils from Vitex doniana could, therefore, be exploited as a natural source of radical scavenging and antimicrobial agents and could be useful in the pharmaceutical, food, and cosmetic industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.