Background: Development of radioresistance in oral squamous cell carcinoma (OSCC) remains a significant problem in cancer treatment, contributing to the lack of improvement in survival trends in recent decades. Effective strategies to overcome radioresistance are necessary to improve the therapeutic outcomes of radiotherapy in OSCC patients. Methods: Cells and xenograft tumors were irradiated using the Small Animal Radiation Research Platform. AKT inhibitor capivasertib (AZD5363) was encapsulated into cathepsin B-responsible nanoparticles (NPs) for tumor-specific delivery. Cell viability was measured by alamarBlue, cell growth was determined by colony formation and 3D culture, and apoptosis was assessed by flow cytometry with the staining of Fluorescein isothiocyanate (FITC) Annexin V and PI. An orthotopic tongue tumor model was used to evaluate the in vivo therapeutic effects. The molecular changes induced by the treatments were assessed by Western blotting and immunohistochemistry. Results: We show that upregulation of AKT signaling is the critical mechanism for radioresistance in OSCC cells, and AKT inactivation by a selective and potent AKT inhibitor capivasertib results in radiosensitivity. Moreover, relative to irradiation (IR) alone, IR combined with the delivery of capivasertib in association with tumor-seeking NPs greatly enhanced tumor cell repression in 3D cell cultures and OSCC tumor shrinkage in an orthotopic mouse model. Conclusions: These data indicate that capivasertib is a potent agent that sensitizes radioresistant OSCC cells to IR and is a promising strategy to overcome failure of radiotherapy in OSCC patients.
Background
There is no consensus about the effective dosages of melatonin in cancer management, thus, it is imperative to fully understand the dose-dependent responsiveness of cancer cells to melatonin and the underlying mechanisms.
Methods
Head and neck squamous cell carcinoma (HNSCC) cells with or without melatonin treatment were used as a research platform. Gene depletion was achieved by short hairpin RNA, small interfering RNA, and CRISPR/Cas9. Molecular changes and regulations were assessed by Western blotting, quantitative RT-PCR (qRT-PCR), immunohistochemistry, and chromatin Immunoprecipitation coupled with qPCR (ChIP-qPCR). The therapeutic efficacy of FGF19/FGFR4 inhibition in melatonin-mediated tumor growth and metastasis was evaluated in orthotopic tongue tumor mice.
Results
The effect of melatonin on controlling cell motility and metastasis varies in HNSCC cells, which is dose-dependent. Mechanistically, high-dose melatonin facilitates the upregulation of FGF19 expression through activating endoplasmic stress (ER)-associated protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor 4 (ATF4) pathway, which in turn promotes FGFR4-Vimentin invasive signaling and attenuates the role of melatonin in repressing metastasis. Intriguingly, following long-term exposure to high-dose melatonin, epithelial HNSCC cells revert the process towards mesenchymal transition and turn more aggressive, which is enabled by FGF19/FGFR4 upregulation and alleviated by genetic depletion of the FGF19 and FGFR4 genes or the treatment of FGFR4 inhibitor H3B-6527.
Conclusions
Our study gains novel mechanistic insights into melatonin-mediated modulation of FGF19/FGFR4 signaling in HNSCC, demonstrating that activating this molecular node confines the role of melatonin in suppressing metastasis and even triggers the switch of its function from anti-metastasis to metastasis promotion. The blockade of FGF19/FGFR4 signaling would have great potential in improving the efficacy of melatonin supplements in cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.