Acute myeloid leukemia is a type of malignant blood cell cancer that can affect both children and adults. There are 60,140 people were expected to be diagnosed with Leukemia in 2016, according to the Leukemia and Lymphoma Society. In order to get the most effective treatment, the patient needs early diagnosis. Therefore we need to have a support system of early diagnosis to guide treatment for patients with acute leukemia as soon as possible. In this paper, the authors propose a Convolutional Neural Network (CNN) based method to distinguish normal and abnormal blood cell images. The proposed method achieves an accuracy up to 96.6% with the dataset including 1188 blood cell images.
The automated and accurate classification of the images portraying the Human Epithelial cells of type 2 (HEp-2) represents one of the most important steps in the diagnosis procedure of many autoimmune diseases. The extreme intra-class variations of the HEp-2 cell images datasets drastically complicates the classification task. We propose in this work a classification framework that, unlike most of the state-of-the-art methods, uses a deep learning-based feature extraction method in a strictly unsupervised way. We propose a deep learning-based hybrid feature learning with two levels of deep convolutional autoencoders. The first level takes the original cell images as the inputs and learns to reconstruct them, in order to capture the features related to the global shape of the cells, and the second network takes the gradients of the images, in order to encode the localized changes in intensity (gray variations) that characterize each cell type. A final feature vector is constructed by combining the latent representations extracted from the two networks, giving a highly discriminative feature representation. The created features will be fed to a nonlinear classifier whose output will represent the type of the cell image. We have tested the discriminability of the proposed features on two of the most popular HEp-2 cell classification datasets, the SNPHEp-2 and ICPR 2016 datasets. The results show that the proposed features manage to capture the distinctive characteristics of the different cell types while performing at least as well as the actual deep learning-based state-of-the-art methods in terms of discrimination.
The complete analysis of the images representing the human epithelial cells of type 2, commonly referred to as HEp-2 cells, is one of the most important tasks in the diagnosis procedure of various autoimmune diseases. The problem of the automatic classification of these images has been widely discussed since the unfolding of deep learning-based methods. Certain datasets of the HEp-2 cell images exhibit an extreme complexity due to their significant heterogeneity. We propose in this work a method that tackles specifically the problem related to this disparity. A dynamic learning process is conducted with different networks taking different input variations in parallel. In order to emphasize the localized changes in intensity, the discrete wavelet transform is used to produce different versions of the input image. The approximation and detail coefficients are fed to four different deep networks in a parallel learning paradigm in order to efficiently homogenize the features extracted from the images that have different intensity levels. The feature maps from these different networks are then concatenated and passed to the classification layers to produce the final type of the cellular image. The proposed method was tested on a public dataset that comprises images from two intensity levels. The significant heterogeneity of this dataset limits the discrimination results of some of the state-of-the-art deep learning-based methods. We have conducted a comparative study with these methods in order to demonstrate how the dynamic learning proposed in this work manages to significantly minimize this heterogeneity related problem, thus boosting the discrimination results.
Classifying the images that portray the Human Epithelial cells of type 2 (HEp-2) represents one of the most important steps in the diagnosis procedure of autoimmune diseases. Performing this classification manually represents an extremely complicated task due to the heterogeneity of these cellular images. Hence, an automated classification scheme appears to be necessary. However, the majority of the available methods prefer to utilize the supervised learning approach for this problem. The need for thousands of images labelled manually can represent a difficulty with this approach. The first contribution of this work is to demonstrate that classifying HEp-2 cell images can also be done using the unsupervised learning paradigm. Unlike the majority of the existing methods, we propose here a deep learning scheme that performs both the feature extraction and the cells’ discrimination through an end-to-end unsupervised paradigm. We propose the use of a deep convolutional autoencoder (DCAE) that performs feature extraction via an encoding–decoding scheme. At the same time, we embed in the network a clustering layer whose purpose is to automatically discriminate, during the feature learning process, the latent representations produced by the DCAE. Furthermore, we investigate how the quality of the network’s reconstruction can affect the quality of the produced representations. We have investigated the effectiveness of our method on some benchmark datasets and we demonstrate here that the unsupervised learning, when done properly, performs at the same level as the actual supervised learning-based state-of-the-art methods in terms of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.