The automated and accurate classification of the images portraying the Human Epithelial cells of type 2 (HEp-2) represents one of the most important steps in the diagnosis procedure of many autoimmune diseases. The extreme intra-class variations of the HEp-2 cell images datasets drastically complicates the classification task. We propose in this work a classification framework that, unlike most of the state-of-the-art methods, uses a deep learning-based feature extraction method in a strictly unsupervised way. We propose a deep learning-based hybrid feature learning with two levels of deep convolutional autoencoders. The first level takes the original cell images as the inputs and learns to reconstruct them, in order to capture the features related to the global shape of the cells, and the second network takes the gradients of the images, in order to encode the localized changes in intensity (gray variations) that characterize each cell type. A final feature vector is constructed by combining the latent representations extracted from the two networks, giving a highly discriminative feature representation. The created features will be fed to a nonlinear classifier whose output will represent the type of the cell image. We have tested the discriminability of the proposed features on two of the most popular HEp-2 cell classification datasets, the SNPHEp-2 and ICPR 2016 datasets. The results show that the proposed features manage to capture the distinctive characteristics of the different cell types while performing at least as well as the actual deep learning-based state-of-the-art methods in terms of discrimination.
Nowadays, 3D printing is widely used in many areas of life. This leads to 3D printing models often being used illegally without any payment to the original providers. Therefore, providers need a solution to identify and protect the copyright of 3D printing. This paper presents a novel watermarking method for the copyright protection of 3D printing based on the Menger facet curvature and K-mean clustering. The facets of the 3D printing model are classified into groups based on the value of Menger curvature and the K-mean clustering, and the mean Menger curvature of each group will then be computed for embedding the watermark data. The watermark data are embedded into the groups of facets by changing the mean Menger curvature of each group according to the bit of watermark data. In each group, we select a facet that has the Menger curvature closest to the changed mean Menger curvature, and we then transform the vertices of the selected facet according to the changed Menger curvature for the watermarked 3D printing model generation. Watermark data are extracted from 3D-printed objects, which are printed from the watermarked 3D printing models by the 3D printer. Experimental results after embedding the watermark verified that the proposed method is invisible and robust to geometric attacks such as rotation, scaling and translation. In experiments with an XYZ Printing Pro 3D printer and 3D scanner, the accuracy and performance of the proposed method was higher than the two previous methods in the 3D printing watermarking domain. The proposed method provides a better solution for the copyright protection of 3D printing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.