Alzheimer’s disease (AD) ranks sixth on the Centers for Disease Control and Prevention Top 10 Leading Causes of Death list for 2016, and the Alzheimer’s Association attributes 60% to 80% of dementia cases as AD related. AD pathology hallmarks include accumulation of senile plaques and neurofibrillary tangles; however, evidence supports that soluble amyloid beta (Aβ), rather than insoluble plaques, may instigate synaptic failure. Soluble Aβ accumulation results in depression of long-term potentiation leading to cognitive deficits commonly characterized in AD. The mechanisms through which Aβ incites cognitive decline have been extensively explored, with a growing body of evidence pointing to modulation of the glutamatergic system. The period of glutamatergic hypoactivation observed alongside long-term potentiation depression and cognitive deficits in later disease stages may be the consequence of a preceding period of increased glutamatergic activity. This review will explore the Aβ-related changes to the tripartite glutamate synapse resulting in altered cell signaling throughout disease progression, ultimately culminating in oxidative stress, synaptic dysfunction, and neuronal loss.
Our previous research demonstrated that soluble amyloid-β (Aβ) 42 , elicits presynaptic glutamate release. We hypothesized that accumulation and deposition of Aβ altered glutamatergic neurotransmission in a temporally and spatially dependent manner. To test this hypothesis, a glutamate selective microelectrode array (MEA) was used to monitor dentate (DG), CA3, and CA1 hippocampal extracellular glutamate levels in 2-4, 6-8, and 18-20 month-old male AβPP/PS1 and agematched C57BL/6J control mice. Starting at 6 months of age, AβPP/PS1 basal glutamate levels are elevated in all three hippocampal subregions that becomes more pronounced at the oldest age group. Evoked glutamate release was elevated in all three age groups in the DG, but temporally delayed to 18-20 months in the CA3 of AβPP/PS1 mice. However, CA1 evoked glutamate release in AβPP/PS1 mice was elevated at 2-4 months of age and declined with age. Plaque deposition was anatomically aligned (but temporally delayed) with elevated glutamate levels; whereby accumulation was first observed in the CA1 and DG starting at 6-8 months that progressed throughout all hippocampal subregions by 18-20 months of age. The temporal hippocampal glutamate changes observed in this study may serve as a biomarker allowing for time point specific therapeutic interventions in Alzheimer's disease patients.
We have previously demonstrated hippocampal hyperglutamatergic signaling occurs prior to plaque accumulation in AβPP/PS1 mice. Here, we evaluate 2-Amino-6-(trifluoromethoxy) benzothiazole (riluzole) as an early intervention strategy for Alzheimer's disease (AD), aimed at restoring glutamate neurotransmission prior to substantial Beta amyloid (Aβ) plaque accumulation and cognitive decline. Male AβPP/ PS1 mice, a model of progressive cerebral amyloidosis, were treated with riluzole from 2-6 months of age. Morris water maze, in vivo electrochemistry, and immunofluorescence were performed to assess cognition, glutamatergic neurotransmission, and pathology, respectively, at 12 months. Four months of prodromal riluzole treatment in AβPP/PS1 mice resulted in long-lasting procognitive effects and attenuated glutamatergic tone that was observed six months after discontinuing riluzole treatment. Riluzole-treated AβPP/PS1 mice had significant improvement in longterm memory compared to vehicle-treated AβPP/PS1 mice that was similar to normal aging C57BL/6J control mice. Furthermore, basal glutamate concentration and evoked-glutamate release levels, which were elevated in vehicle-treated AβPP/PS1 mice, were restored to levels observed in age-matched C57BL/6J mice in AβPP/PS1 mice receiving prodromal riluzole treatment. Aβ plaque accumulation was not altered with riluzole treatment. This study supports that interventions targeting the glutamatergic system during the early stages of AD progression have long-term effects on disease outcome, and importantly may prevent cognitive decline. Our observations provide preclinical support for targeting glutamate neurotransmission in patients at risk for developing AD. K E Y W O R D S alpha-7 nicotinic acetylcholine receptor (α7nAChR), Alzheimer's disease (AD), amyloid-beta (Aβ), biosensor, learning and memory, prodromal intervention Read the Editorial Highlight for this article on page 399.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.