Harvesting microalgae from liquid culture is a difficult issue to solve and is most commonly done through settling. However, settling is a slow process on its own and generally needs to be induced chemically or by introducing stress to the culture. Polymeric, cationic substances, such as cationised starch and chitosan, are often used for flocculation and settling. These large, positively charged molecules form large clusters with suspended particles in the liquid medium. In the present study, three natural organic flocculants (cationic starch, chitosan and acacia tannin S5T) were tested to harvest microalgal cultures grown in wastewater. Two microalgal species, one strain of Chlorella vulgaris and one strain of Scenedesmus obliquus, were cultured in municipal wastewater for different lengths of time, and settled using either cationic starch, chitosan or acacia tannin S5T. Results indicated that S5T worked with approximately the same efficiency in the two assayed species, although it requires a relatively high dosage to function (about 300 mg L −1 ), while the other two flocculants varied from species to species.
Rapid rises in atmospheric CO2 levels derived from fossil fuel combustion are imposing urgent needs for renewable substitutes. One environmentally friendly alternative is biodiesel produced from suitable microalgal fatty acids. Algal strains normally grow photoautotrophically, but this is problematic in Northern areas because of the light limitations for much of the year. Mixotrophic and particularly heterotrophic strains could be valuable, especially if they can be cultivated in municipal wastewater with contents of nutrients such as nitrogen and phosphorous that should be reduced before release into receiving water. Thus, the aim of this study was to screen for microalgal strains suitable for heterotrophic cultivation with a cheap carbon source (glycerol) for biodiesel production in Nordic, and other high-latitude, countries. One of the examined strains, a Desmodesmus sp. strain designated 2-6, accumulated biomass at similar rates in heterotrophic conditions with 40 mM glycerol as in autotrophic conditions. Furthermore, in heterotrophic conditions it produced more fatty acids, and ca. 50% more C18:1 fatty acids, as well as showing a significant decrease in C18:3 fatty acids, all of which are highly desirable features for biodiesel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.