The global burden of disease associated with wounds is an increasingly significant public health concern. Current treatments are often expensive, time‐consuming and limited in their efficacy in chronic wounds. The challenge of overcoming current barriers associated with wound care requires innovative management techniques. Regenerative medicine is an emerging field of research that focuses on the repair, replacement or regeneration of cells, tissues or organs to restore impaired function. This article provides an overview of the pathophysiology of wound healing and reviews the latest evidence on the application of the principal components of regenerative medicine (growth factors, stem cell transplantation, biomaterials and tissue engineering) as therapeutic targets. Improved knowledge and understanding of the pathophysiology of wound healing has pointed to new therapeutic targets. Regenerative medicine has the potential to underpin the design of specific target therapies in acute and chronic wound healing. This personalised approach could eventually reduce the burden of disease associated with wound healing. Further evidence is required in the form of large animal studies and clinical trials to assess long‐term efficacy and safety of these new treatments.
Vascular malformations occur during early vascular development resulting in abnormally formed vessels that can manifest as arterial, venous, capillary or lymphatic lesions, or in combination, and include local tissue overdevelopment. Vascular malformations are largely caused by sporadic somatic gene mutations. This article aims to review and discuss current molecular signaling pathways and therapeutic targets for vascular malformations and to classify vascular malformations according to the molecular pathways involved. A literature review was performed using Embase and Medline. Different MeSH terms were combined for the search strategy, with the aim of encompassing all studies describing the classification, pathogenesis, and treatment of vascular malformations. Major pathways involved in the pathogenesis of vascular malformations are vascular endothelial growth factor (VEGF), Ras/Raf/MEK/ERK, angiopoietin-TIE2, transforming growth factor beta (TGF-β), and PI3K/AKT/mTOR. These pathways are involved in controlling cellular growth, apoptosis, differentiation, and proliferation, and play a central role in endothelial cell signaling and angiogenesis. Many vascular malformations share similar aberrant molecular signaling pathways with cancers and inflammatory disorders. Therefore, selective anticancer agents and immunosuppressants may be beneficial in treating vascular malformations of specific mutations. The current classification systems of vascular malformations, including the International Society of the Study of Vascular Anomalies (ISSVA) classification, are primarily observational and clinical, and are not based on the molecular pathways involved in the pathogenesis of the condition. Several molecular pathways with potential therapeutic targets have been demonstrated to contribute to the development of various vascular anomalies. Classifying vascular malformations based on their molecular pathogenesis may improve treatment by determining the underlying nature of the condition and their potential therapeutic target.
We have created a novel animal model of pressure ulcer formation in the setting of a SCI. Histological analysis revealed different stages of injury corresponding to the amount of pressure the animals were exposed to with decreased blood flow immediately after the insult along with a subsequent marked increase in blood flow the next day, conducive to an ischemia-reperfusion injury (IRI) and a possible inflammatory response following tissue injury. Following ischemia and hypoxia secondary to microcirculation impairment, free radicals generate lipid peroxidation, leading to ischemic tissue damage. Future studies should be aimed at measuring free radicals during this period of increased blood flow, following tissue ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.