Background: Acute myocardial infarction (AMI) and the ensuing ischemic heart disease are approaching an epidemic state. Limited stem cell retention following intracoronary administration has reduced the clinical efficacy of this novel therapy. Polymer based cell coating is biocompatible and has been shown to be safe. Here, we assessed the therapeutic utility of gelatin-based biodegradable cell coatings on bone marrow derived cell retention in ischemic heart.Methods: Gelatin based cell coatings were formed from the surface-mediated photopolymerization of 3% gelatin methacrylamide and 1% PEG diacrylate. Cell coating was confirmed using a multimodality approach including flow cytometry, imaging flow cytometry (ImageStream System) and immunohistochemistry. Biocompatibility of cell coating, metabolic activity of coated cells, and the effect of cell coating on the susceptibility of cells for engulfment were assessed using in vitro models. Finally, cell adhesion to extracellular matrix was assessed in vitro using a microfluidic device. Following myocardial infarction and GFP+ BM-derived mesenchymal stem cell transplantation, flow cytometric and immunohistochemical assessment of retained cells was performed.Results: Coated cells are viable and metabolically active with coating degrading within 72 hours in vitro. Importantly, cell coating does not predispose bone marrow cells to aggregation or increase their susceptibility to phagocytosis. In vitro and in vivo studies demonstrated no evidence of heightened immune response or increased phagocytosis of coated cells. Cell transplantation studies following myocardial infarction proved the improved retention of coated bone marrow cells compared to uncoated cells.
The research community is intent on harnessing increasingly complex biological building blocks. At present, cells represent a highly functional component for integration into higher order systems. In this review, we discuss the current application space for cellular coating technologies and emphasize the relationship between the target application and coating design. We also discuss how the cell and the coating interact in common analytical techniques, and where caution must be exercised in the interpretation of results. Finally, we look ahead at emerging application areas that are ideal for innovation in cellular coatings. In all, cellular coatings leverage the machinery unique to specific cell types, and the opportunities derived from these hybrid assemblies have yet to be fully realized.
Much effort has gone into developing fluid biopsies of patient peripheral blood for the monitoring of metastatic cancers. One common approach is to isolate and analyze tumor cells in the peripheral blood. Widespread clinical implementation of this approach has been hindered by the current choice of targeting epithelial markers known to be highly variable in primary tumor sites. Here, we review current antigen-based tumor cell isolation strategies and offer biological context for commonly studied cancer surface markers. Expression levels of the most common markers are quantitated for three breast cancer and two non-small cell lung cancer (NSCLC) lineage models. These levels are contrasted with that present on healthy peripheral blood mononuclear cells (PBMC) for comparison to expected background levels in a fluid biopsy setting. A key feature of this work is establishing a metric of markers per square micrometer. This describes an average marker density on the cell membrane surface, which is a critical metric for emerging isolation strategies. These results serve to extend expression of key tumor markers in a sensitive and dynamic manner beyond traditional positive/negative immunohistochemical staining to guide future fluid biopsy targeting strategies.
Targeted photopolymerization is the basis for multiple diagnostic and cell encapsulation technologies. While eosin is used in conjunction with tertiary amines as a water-soluble photoinitiation system, eosin is not widely sold as a conjugate with antibodies and other targeting biomolecules. Here we evaluate the utility of fluorescein-labeled bioconjugates to photopolymerize targeted coatings on live cells. We show that although fluorescein conjugates absorb approximately 50% less light energy than eosin in matched photopolymerization experiments using a 530 nm LED lamp, appreciable polymer thicknesses can still be formed in cell compatible environments with fluorescein photosensitization. At low photoinitiator density, eosin allows more sensitive initiation of gelation. However at higher functionalization densities, the thickness of fluorescein polymer films begins to rival that of eosin. Commercial fluorescein-conjugated antibodies are also capable of generating conformal, protective coatings on mammalian cells with similar viability and encapsulation efficiency as eosin systems.
Mesenchymal stem cell (MSC) therapy has been widely tested in clinical trials to promote healing post-myocardial infarction. However, low cell retention and the need for a large donor cell number in human studies remain a key challenge for clinical translation. Natural biomaterials such as gelatin are ideally suited as scaffolds to deliver and enhance cell engraftment after transplantation. A potential drawback of MSC encapsulation in the hydrogel is that the bulky matrix may limit their biological function and interaction with the surrounding tissue microenvironment that conveys important injury signals. To overcome this limitation, we adopted a gelatin methacrylate (gelMA) cell-coating technique that photocross-links gelatin on the individual cell surface at the nanoscale. The present study investigated the cardiac protection of gelMA coated, hypoxia preconditioned MSCs (gelMA-MSCs) in a murine myocardial infarction (MI) model. We demonstrate that the direct injection of gelMA-MSC results in significantly higher myocardial engraftment 7 days after MI compared to uncoated MSCs. GelMA-MSC further amplified MSC benefits resulting in enhanced cardioprotection as measured by cardiac function, scar size, and angiogenesis. Improved MSC cardiac retention also led to a greater cardiac immunomodulatory function after injury. Taken together, this study demonstrated the efficacy of gelMA-MSCs in treating cardiac injury with a promising potential to reduce the need for donor MSCs through enhanced myocardial engraftment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.