Background: Rabbits are useful for preclinical studies of sinusitis because of similar physiologic features to humans. The objective of this study is to develop a rabbit model of sinusitis that permits assessment of microanatomy and sampling for evaluating shifts in the sinus microbiota during the development of sinusitis and to test how the mucociliary clearance (MCC) defect might lead to dysbiosis and chronic rhinosinusitis (CRS).Methods: Generation of CRS was accomplished with an insertion of a sterile sponge into the left middle meatus of New Zealand white rabbits (n = 9) for 2 weeks. After sponge removal, 4 rabbits were observed for another 10 weeks and evaluated for CRS using endoscopy, microCT, visualization of the functional micro-anatomy by micro-optical coherence tomography (μOCT), and histopathological analysis of the sinus mucosa. Samples were taken from the left middle meatus and submitted for microbiome analysis.Results: CT demonstrated opacification of all left sinuses at 2 weeks in all rabbits (n = 9), which persisted in animals followed for another 12 weeks (n = 4). Histology at week 2 showed mostly neutrophils. On week 14, significant infiltration of plasma cells and lymphocytes was noted with increased submucosal glands compared to controls (p = 0.02). Functional microanatomy at 2 weeks showed diminished periciliary layer (PCL) depth (p < 0.0001) and mucus transport (p = 0.0044) compared to controls despite a thick mucus layer. By 12 weeks, the thickened mucus layer was resolved but PCL depletion persisted in addition to decreased ciliary beat frequency (CBF; p < 0.0001). The mucin fermenting microbes (Lactobacillales, Bacteroidales) dominated on week 2 and there was a significant shift to potential pathogens (e.g., Pseudomonas, Burkholderia) by week 14 compared to both controls and the acute phase (p < 0.05).Conclusion: We anticipate this reproducible model will provide a means for identifying underlying mechanisms of airway-surface liquid (ASL) depletion and fundamental changes in sinus microbial communities that contribute to the development of CRS. The rabbit model of sinusitis exhibited diminished PCL depth with delayed mucus transport and significant alterations and shift in the sinus microbiome during the development of chronic inflammation.
Background Dehydration of airway surface liquid (ASL) disrupts normal mucociliary clearance (MCC) in sinonasal epithelium, which may lead to chronic rhinosinusitis (CRS). Abnormal chloride (Cl−) transport is one such mechanism that contributes to this disorder and can be acquired secondary to environmental perturbations, such as hypoxia at the tissue surface. The objective of this study was to assess the technological feasibility of the novel micro-optical coherence tomography (μOCT) imaging technique for investigating acquired MCC defects in cultured human sinonasal epithelial (HSNE) cells. Methods Primary HSNE cell cultures were subjected to a 1% oxygen environment for 12 hours to induce acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Ion transport characteristics were assessed with pharmacologic manipulation in Ussing chambers. ASL, periciliary fluid (PCL), and ciliary beat frequency (CBF) were evaluated using μOCT. Results Amiloride-sensitive transport (ΔISC) was greater in cultures exposed to hypoxia (hypoxia: −13.2 ± 0.6 μA/cm2; control: −6.5 ± 0.1 μA/cm2; p < 0.01), whereas CFTR-mediated anion transport was significantly diminished (hypoxia: 28.6 ± 0.3 μA/cm2; control: 36.2 ± 1.6 μA/cm2; p < 0.01), consistent with acquired CFTR dysfunction and sodium hyperabsorption. Hypoxia diminished all markers of airway surface function microanatomy as observed with μOCT, including ASL (hypoxia: 5.0 ± 0.4 μm; control: 9.0 ± 0.9 μm; p < 0.01) and PCL depth (hypoxia: 2.5 ± 0.1 μm; control: 4.8 ± 0.3 μm; p < 0.01), and CBF (hypoxia: 8.7 ± 0.3 Hz; control: 10.2 ± 0.3 Hz; p < 0.01). Conclusion Hypoxia-induced defects in epithelial anion transport in HSNE led to predictable effects on markers of MCC measured with novel μOCT imaging. This imaging method represents a technological leap forward and is feasible for assessing acquired defects impacting the airway surface.
Objectives Chronic rhinosinusitis (CRS) is often associated with persistent bacterial infection despite the use of systemic antibiotics. Topically administered antibiotics are an alternative strategy, but require effective local concentrations, prolonged mucosal contact time, minor systemic absorption, and minimal depletion. The objectives of the current study are to analyze the in vitro release rate and in vivo drug delivery tolerance and pharmacokinetics of a ciprofloxacin-coated sinus stent (CSS). Methods The CSS (2 mg) was created from biodegradable poly-D/L-lactic acid. After analyzing in vitro release profile, CSTs were placed unilaterally in maxillary sinuses of 16 rabbits via dorsal sinusotomy. Animals were sacrificed between 1 and 3 weeks postoperatively. Ciprofloxacin concentrations in the sinus tissue and plasmas were assessed using high-performance liquid chromatography. Radiological and histological evaluations were performed. Results In the in vitro release profile, an initial burst release was observed over the first 24 hrs, followed by sustained release through the 14 day time point. In the rabbit model, ciprofloxacin was continuously released from the stent up to 3 weeks at doses > 50 ng/ml. Histologic examination found no evidence of inflammation, epithelial ulceration or bony reaction upon sacrifice of the animals at 21 days. Computed tomography also demonstrated no signs of mucosal edema or opacification in the sinus. Conclusion The CST was safe in this preclinical model and sustained release was observed in both the in vitro and in vivo analyses. The innovative stent design coated with ciprofloxacin may provide a unique therapeutic strategy for CRS.
Background Methods to improve the clinical efficacy of currently available antibiotics against multidrug resistant bacteria in cystic fibrosis (CF) chronic rhinosinusitis (CRS) are greatly needed. Ivacaftor, a cystic fibrosis transmembrane conductance regulator potentiator, was recently identified as having potentially beneficial off-target effects as a weak inhibitor of bacterial DNA gyrase and topoisomerase IV. The objective of the current study is to evaluate whether ivacaftor enhances the antimicrobial activity of ciprofloxacin against Pseudomonas aeruginosa. Methods The planktonic growth of the PAO-1 strain of P. aeruginosa was studied in the presence of ciprofloxacin and/or ivacaftor. Effects were measured according to optical density of cultured PAO-1 at 600 nm. For a static PAO-1 biofilm assay, the PAO-1 strain was inoculated and cultured for 72 h in the presence of the drugs. Formed PAO-1 biofilms were quantified by crystal violet staining and imaged with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results PAO-1 growth was significantly reduced in the presence of ivacaftor (8 or 16 µg/mL) and ciprofloxacin (0.02 or 0.05 µg/mL) compared to ciprofloxacin alone ( P < .001). Similarly, ivacaftor (8 or 16 µg/mL) showed a significant reduction of PAO-1 biofilms when treated with 0.05 µg/mL of ciprofloxacin. Significant synergism was noted between ciprofloxacin and 16 µg/mL of ivacaftor ( P < .0001) in reducing planktonic growth and biofilm formation. Quantitative measurements with crystal violet staining were correlated to CLSM and SEM images. Conclusion Ivacaftor enhanced ciprofloxacin’s antimicrobial activity against P. aeruginosa. Further studies evaluating the efficacy of ivacaftor/ciprofloxacin combination for P. aeruginosa for CF CRS are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.