Strong social support can negate negative health outcomes - an effect defined as 'social buffering'. In the present study, using the socially monogamous prairie vole (Microtus ochrogaster), we examined whether the presence of a bonded partner during a stressful event can reduce stress responses. Adult, pair-bonded female and male voles were assigned into experimental groups that were either handled (Control), experienced a 1-h immobilization (IMO) stress alone (IMO-Alone), or experienced IMO with their partner (IMO-Partner). Thereafter, subjects were tested for anxiety-like behavior, and brain sections were subsequently processed for oxytocin receptor (OTR) and vasopressin V1a-type receptor (V1aR) binding. Our data indicate that while IMO stress significantly decreased the time that subjects spent in the open arms of an elevated plus maze, partner's presence prevented this behavioral change - this social buffering on anxiety-like behavior was the same for both male and female subjects. Further, IMO stress decreased OTR binding in the nucleus accumbens (NAcc), but a partner's presence dampened this effect. No effects were found in V1aR binding. These data suggest that the neuropeptide- and brain region-specific OTR alterations in the NAcc may be involved in both the mediation and social buffering of stress responses. Some sex differences in the OTR and V1aR binding were also found in selected brain regions, offering new insights into the sexually dimorphic roles of the two neuropeptides. Overall, our results suggest a potential preventative approach in which the presence of social interactions during a stressor may buffer typical negative outcomes.
As prairie voles (Microtus ochrogaster) display spontaneous biparental care, and the ventromedial hypothalamus (VMH) has been implicated in reproductive behaviour, we conducted experiments to test the hypothesis that the VMH neurochemical circuitry is involved in alloparental behaviours in male prairie voles. We compared alloparental behaviours of adult, sexually naïve male and female voles—both displayed licking/grooming, huddling and retrieving behaviours towards conspecific pups. We also stained for the immediate‐early gene encoded early growth protein Egr‐1 in the vole brain. The pup‐exposed animals showed levels of Egr‐1 staining that was higher in the VMH but lower in the amygdala compared to animals exposed to a pup‐sized piece of plastic (control). A retrograde tracer, Fluoro‐Gold (FG), was injected into the VMH of male voles that were subsequently tested in the pup exposure or control condition. More FG/Egr‐1 cells were detected for glutamatergic (GLU) staining in the ventral bed nucleus of the stria terminalis (BNSTv) and medial amygdala (MeA), whereas less FG/Egr‐1 cells were stained for gamma‐aminobutyric acid (GABA) in the MeA of the pup‐exposed group compared to the control group. Further, the ratio of GLU:GABA expression in FG/Egr‐1 projection neurons from both the BNSTv and MeA to the VMH was increased following pup exposure. Finally, pharmacological blockade of either dopamine D1 receptor or oxytocin receptor in the VMH impaired the onset of male alloparental behaviour. Together, these data suggest that the VMH may be involved in the onset of alloparental care and play a role in regulating social approach in male prairie voles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.