Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP−TFP interactions between cells should be a dominant mechanism that promotes cell−cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell−cell association and directional collective motion within motile groups to aid their survival.he bacterium Pseudomonas aeruginosa is a ubiquitous organism that is a known opportunistic pathogen, causing both chronic and acute infections in susceptible populations, including individuals with cystic fibrosis or burn wounds, or Intensive Care Unit patients (1). Among questions that remain unanswered for nonobligate pathogens like P. aeruginosa is how these bacteria initiate infections after entering the host from the environment. Given that P. aeruginosa is among many bacteria that grow as a biofilm during infection, there is a need to understand how individual cells coordinate in space with each other to colonize new surfaces and subsequently transition to stationary biofilms.Many organisms coordinate their movement as a population, emerging as self-organized swarming groups. Even the untrained eye would note the coordinated swarming behavior of fish, birds, and insects. Many bacteria also exhibit collective motion by swarming over surfaces in a coordinated manner to move unimpeded at the same time (2-4). Our knowledge of the specific actions used by individual cells during collective motion is limited; the behavior of single cells within a dense population is difficult to discern experimentally. Previous attempts to study bacterial collective behavior have used computational models to test mechanisms hypothesized to influence collective motion, including directional r...
In very low density situations where a single myxobacterial cell is isolated from direct contact with other cells, the slime capsule interaction with the substrate or slime tracks on the substrate produce a viscous drag that results in a smooth gliding motion. Viscoelastic interactions of myxobacteria cells in a low-density domain close to the edge of a swarm are studied using a combination of a cell-based three-dimensional computational model and cell-tracking experiments. The model takes into account the flexible nature of Myxococcus xanthus as well as the effects of adhesion between cells arising from the interaction of the capsular polysaccharide covering two cells in contact with each other. New image and dynamic cell curvature analysis algorithms are used to track and measure the change in cell shapes that occur as flexible cells undergo significant bending during collisions resulting in direct calibration of the model parameters. Like aspect-ratio and directional reversals, the flexibility of cells and the adhesive cell-cell and cell-substrate interactions of M. xanthus play an important role in smooth gliding and more efficient swarming.
Bacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more "temperate swarmers" that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. "Wettability", or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment.
Blebs are balloon-shaped membrane protrusions that form during many physiological processes. Using computer simulation of a particle-based model for self-assembled lipid bilayers coupled to an elastic meshwork, we investigated the phase behavior and kinetics of blebbing. We found that blebs form for large values of the ratio between the areas of the bilayer and the cytoskeleton. We also found that blebbing can be induced when the cytoskeleton is subject to a localized ablation or a uniform compression. The results obtained are qualitatively in agreement with the experimental evidence and the model opens up the possibility to study the kinetics of bleb formation in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.