Objective The aim of this review was to summarize the literature regarding the impact of the menopause transition on body weight and body composition. MethodsWe conducted a search of the literature using Medline (Ovid, 1946 -present) and PubMed (1966PubMed ( -2012 for English-language studies that included the following search terms: ' menopause ' , ' midlife ' , ' hormone therapy ' or ' estrogen ' combined with ' obesity ' , ' body weight ' or ' body composition ' .Results Whereas weight gain per se cannot be attributed to the menopause transition, the change in the hormonal milieu at menopause is associated with an increase in total body fat and an increase in abdominal fat. Weight excess at midlife is not only associated with a heightened risk of cardiovascular and metabolic disease, but also impacts adversely on health-related quality of life and sexual function. Animal and human studies indicate that this tendency towards central abdominal fat accumulation is ameliorated by estrogen therapy. Studies mostly indicate a reduction in overall fat mass with estrogen and estrogen -progestin therapy, improved insulin sensitivity and a lower rate of development of type 2 diabetes. ConclusionThe hormonal changes across the perimenopause substantially contribute to increased abdominal obesity which leads to additional physical and psychological morbidity. There is strong evidence that estrogen therapy may partly prevent this menopause-related change in body composition and the associated metabolic sequelae. However, further studies are required to identify the women most likely to gain metabolic benefi t from menopausal hormone therapy in order to develop evidence-based clinical recommendations.
The concept of immunosenescence reflects age-related changes in immune responses, both cellular and serological, affecting the process of generating specific responses to foreign and self-antigens. The decline of the immune system with age is reflected in the increased susceptibility to infectious diseases, poorer response to vaccination, increased prevalence of cancer, autoimmune and other chronic diseases. Both innate and adaptive immune responses are affected by the aging process; however, the adaptive response seems to be more affected by the age-related changes in the immune system. Additionally, aged individuals tend to present a chronic low-grade inflammatory state that has been implicated in the pathogenesis of many age-related diseases (atherosclerosis, Alzheimer's disease, osteoporosis and diabetes). However, some individuals arrive to advanced ages without any major health problems, referred to as healthy aging. The immune system dysfunction seems to be somehow mitigated in this population, probably due to genetic and environmental factors yet to be described. In this review, an attempt is made to summarize the current knowledge on how the immune system is affected by the aging process.
Extended-release ferrous sulfate with mucoproteose appears to be the best tolerated of the different oral iron supplements evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.