This loss of calibration, the agreement between observed and predicted event rates, has been found to have occurred over Background-The calibration of several cardiac clinical prediction models has deteriorated over time. We compare different model fitting approaches for in-hospital mortality after cardiac surgery that adjust for cross-sectional case mix in a heterogeneous patient population.
BackgroundThe Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury (AKI) guidelines assign the same stage of AKI to patients whether they fulfil urine output criteria, serum creatinine criteria or both criteria for that stage. This study explores the validity of the KDIGO guidelines as a tool to stratify the risk of adverse outcomes in cardiac surgery patients.MethodsProspective data from consecutive adult patients admitted to the cardiac intensive care unit (CICU) following cardiac surgery between January 2013 and May 2015 were analysed. Patients were assigned to groups based on the criteria they met for each stage of AKI according to the KDIGO guidelines. Short and mid-term outcomes were compared between these groups.ResultsA total of 2267 patients were included with 772 meeting criteria for AKI-1 and 222 meeting criteria for AKI-2. After multivariable adjustment, patients meeting both urine output and creatinine criteria for AKI-1 were more likely to experience prolonged CICU stay (OR 4.9, 95%CI 3.3–7.4, p < 0.01) and more likely to require renal replacement therapy (OR 10.5, 95%CI 5.5–21.9, p < 0.01) than those meeting only the AKI-1 urine output criterion. Patients meeting both urine output and creatinine criteria for AKI-1 were at an increased risk of mid-term mortality compared to those diagnosed with AKI-1 by urine output alone (HR 2.8, 95%CI 1.6–4.8, p < 0.01). Patients meeting both urine output and creatinine criteria for AKI-2 were more likely to experience prolonged CICU stay (OR 16.0, 95%CI 3.2–292.0, p < 0.01) or require RRT (OR 11.0, 95%CI 4.2–30.9, p < 0.01) than those meeting only the urine output criterion. Patients meeting both urine output and creatinine criteria for AKI-2 were at a significantly increased risk of mid-term mortality compared to those diagnosed with AKI-2 by urine output alone (HR 3.6, 95%CI 1.4–9.3, p < 0.01).ConclusionsPatients diagnosed with the same stage of AKI by different KDIGO criteria following cardiac surgery have significantly different short and mid-term outcomes. The KDIGO criteria need to be revisited before they can be used to stratify reliably the severity of AKI in cardiac surgery patients. The utility of the criteria also needs to be explored in other settings.Electronic supplementary materialThe online version of this article (10.1186/s12882-018-0946-x) contains supplementary material, which is available to authorized users.
Recently, Early Warning Signals (EWS) have been developed to predict tipping points in Earth Systems. This discussion highlights the potential to apply EWS to human social and economic systems, which may also undergo similar critical transitions. Social tipping points are particularly difficult to predict, however, and the current formulation of EWS, based on a physical system analogy, may be insufficient. As an alternative set of EWS for social systems, we join with other authors encouraging a focus on heterogeneity, connectivity through social networks and individual thresholds to change.
Marine seismic reflection technique is used to observe the strong ocean dynamic process of nonlinear internal solitary waves (ISWs or solitons) in the near‐surface water. Analysis of ISWs is problematical because of their transient nature and limitations of classical physical oceanography methods. This work explores a Markov Chain Monte Carlo (MCMC) approach to recover the temperature and salinity of ISW field using the seismic reflectivity data and in situ hydrographic data. The MCMC approach is designed to directly sample the posterior probability distributions of temperature and salinity which are the solutions of the system under investigation. The principle improvement is the capability of incorporating uncertainties in observations and prior models which then provide quantified uncertainties in the output model parameters. We tested the MCMC approach on two acoustic reflectivity data sets one synthesized from a CTD cast and the other derived from multichannel seismic reflections. This method finds the solutions faithfully within the significantly narrowed confidence intervals from the provided priors. Combined with a low frequency initial model interpreted from seismic horizons of ISWs, the MCMC method is used to compute the finescale temperature, salinity, acoustic velocity, and density of ISW field. The statistically derived results are equivalent to the conventional linearized inversion method. However, the former provides us the quantified uncertainties of the temperature and salinity along the whole section whilst the latter does not. These results are the first time ISWs have been mapped with sufficient detail for further analysis of their dynamic properties.
Geochronology is essential for understanding Earth's history. The availability of precise and accurate isotopic data is increasing; hence it is crucial to develop transparent and accessible data reduction techniques and tools to transform raw mass spectrometry data into robust chronological data. Here we present a Monte Carlo sampling approach to fully propagate uncertainties from linear regressions for isochron dating. Our new approach makes no prior assumption about the causes of variability in the derived chronological results and propagates uncertainties from both experimental measurements (analytical uncertainties) and underlying assumptions (model uncertainties) into the final age determination.Using synthetic examples, we find that although the estimates of the slope and y-intercept (hence age and initial isotopic ratios) are comparable between the Monte Carlo method and the benchmark ''Isoplot" algorithm, uncertainties from the later could be underestimated by up to 60%, which are likely due to an incomplete propagation of model uncertainties. An additional advantage of the new method is its ability to integrate with geological information to yield refined chronological constraints. The new method presented here is specifically designed to fully propagate errors in geochronological applications involves linear regressions such as Rb-Sr,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.