Zinc is an essential nutrient for all living organisms because it is a co-factor of several important proteins. Furthermore, zinc may play an essential role in the infectiousness of microorganisms. Previously, we determined that functional zinc metabolism is associated with Cryptococcus gattii virulence. Here, we characterized the ZIP zinc transporters in this human pathogen. Transcriptional profiling revealed that zinc levels regulated the expression of the ZIP1, ZIP2 and ZIP3 genes, although only the C. gattii zinc transporter Zip1 was required for yeast growth under zinc-limiting conditions. To associate zinc uptake defects with virulence, the most studied cryptococcal virulence factors (i.e., capsule, melanin and growth at 37 °C) were assessed in ZIP mutant strains; however, no differences were detected in these classical virulence-associated traits among the mutant and WT strains. Interestingly, higher levels of reactive oxygen species were detected in the zip1Δ and in the zip1Δ zip2Δ double mutants. In line with these phenotypic alterations, the zip1Δ zip2Δ double mutant displayed attenuated virulence in a murine model of cryptococcosis. Together, these results indicate that adequate zinc uptake is necessary for cryptococcal fitness and virulence.
Cryptococcus neoformans and Cryptococcus gattii are the etiological agents of cryptococcosis, a high mortality disease. The development of such disease depends on the interaction of fungal cells with macrophages, in which they can reside and replicate. In order to dissect the molecular mechanisms by which cryptococcal cells modulate the activity of macrophages, a genome-scale comparative analysis of transcriptional changes in macrophages exposed to Cryptococcus spp. was conducted. Altered expression of nearly 40 genes was detected in macrophages exposed to cryptococcal cells. The major processes were associated with the mTOR pathway, whose associated genes exhibited decreased expression in macrophages incubated with cryptococcal cells. Phosphorylation of p70S6K and GSK-3β was also decreased in macrophages incubated with fungal cells. In this way, Cryptococci presence could drive the modulation of mTOR pathway in macrophages possibly to increase the survival of the pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.