Objective: The presence of focal lesion (FL) after a severe traumatic brain injury is an important factor in determining morbidity and mortality. Despite this relevance, few studies show the pattern of recovery of patients with severe traumatic brain injury (TBI) with FL within one year. The objective of this study was to identify the pattern of recovery, independence to perform activities of daily living (ADL), and factors associated with mortality and unfavorable outcome at six and twelve months after severe TBI with FL. Methodology: This is a prospective cohort, with data collected at admission, hospital discharge, three, six, and twelve months after TBI. RESULTS: The study included 131 adults with a mean age of 34.08 years. At twelve months, 39% of the participants died, 80% were functionally independent by the Glasgow Outcome Scale Extended, 79% by the Disability Rating Scale, 79% were independent for performing ADLs by the Katz Index, and 53.9% by the Lawton Scale. Report of alcohol intake, sedation time, length of stay in intensive care (ICU LOS), Glasgow Coma Scale, trauma severity indices, hyperglycemia, blood glucose, and infection were associated with death. At six and twelve months, tachypnea, age, ICU LOS, trauma severity indices, respiratory rate, multiple radiographic injuries, and cardiac rate were associated with dependence. Conclusions: Patients have satisfactory functional recovery up to twelve months after trauma, with an accentuated improvement in the first three months. Clinical and sociodemographic variables were associated with post-trauma outcomes. Almost all victims of severe TBI with focal lesions evolved to death or independence.
More than a dozen tornadoes occur on average every year in the Canadian province of Ontario (ECCC, 2017). While most are weak in nature (i.e., rated F/EF0-1), a number of tornadoes having far greater intensity have occurred. For example, F4 tornadoes in 1946For example, F4 tornadoes in , 1970For example, F4 tornadoes in and 1985 resulted in 31 deaths and hundreds of injuries.Though tornadoes in Ontario have been recorded March to December, the peak months are May to August. Over the last decade or more, Ontario's severe weather community has noted anecdotally that tornadoes now seem to occur later in the season here. In fact, all three November tornadoes on record in Ontario occurred after 2004 (F/EF1 tornadoes in 2005, 2013 and 2020), and in 2018 an EF3 tornado developed as part of a 7-tornado outbreak in southern Ontario and neighboring Quebec in late September (Sills et al., 2020)-the first September F/EF3+ Canadian tornado in 120 years and the first tornado outbreak of such magnitude that late in the year in Canada.For this reason, the present study investigates the long-term trend in the month of maximum tornado occurrence in Ontario. It also looks for similar long-term trends using tornado data from neighboring US states.Though no past research work investigates this aspect of tornado climatology in Canada, studies on this topic exist in the United States. Long and Stoy (2014) found that, over the past six decades in the central and southern US Great Plains, peak tornado frequency has shifted earlier by 7 days. Lu et al. (2015) investigated tornado trends in the central US and their results also suggested that the seasonal peaks for both observed tornadoes and environments conducive to tornadoes now occur earlier in the year with a trend of 3.7 days per decade.Note that the Fujita (F) scale (Fujita, 1981) was used in Canada to 2012, and was replaced by the Enhanced Fujita
Em memória dos meus avós Carmem Vilhena Estevam eFranscisco Estevam v AGRADECIMENTOS Gostaria de agradecer primeiramente a Deus que mais uma vez mostrou Sua fidelidade em minha vida.Meu especial agradecimento ao meu esposo Marcos por seu apoio e ajuda incondicionais.Os mais sinceros agradecimentos aos meus pais, Nivaldo Estevam e Delíria Estevam, que sempre apoiaram os meus estudos. Ao meu irmão Clayton pelo apoio e incentivo também.Agradeço ao Prof. Dr. Ronaldo Dias por sua orientação e incentivo durante o mestrado e também iniciação científica.Aos professores Francisco Cribari Neto e Vitor Hugo Lachos Dávila, por aceitarem participar da banca examinadora, pelas correções e sugestões.Não poderia deixar de agradecer também a todos os meus amigos pelo apoio e incentivo. Em especial, agradeço à Daniela Fonsechi, grande amiga e companheira ao longo do mestrado, e que tanto me ajudou.Finalmente, agradeço à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro a este projeto. vii ResumoAvanços na tecnologia moderna têm facilitado a coleta e análise de dados de alta dimensão, ou dados que são formados por medidas repetidas de um mesmo objeto. Quando os dados são registrados densamente ao longo do tempo, freqüentemente por máquinas, eles são tipicamente chamados de dados funcionais, com uma curva (ou função) observada por objeto em estudo. A análise estatística de uma amostra de n curvas como essas é comumente chamada de análise de dados funcionais, ou ADF. Conceitualmente, dados funcionais são continuamente definidos. Claro que na prática eles geralmente são observados em pontos discretos. Não há exigência para que os dados sejam suaves, mas freqüentemente a suavidade ou outra regularidade será um aspecto chave da análise, em alguns casos derivadas das funções observadas serão importantes. Nessa dissertação diferentes técnicas de suavização serão apresentadas e discutidas, principalmente aquelas baseadas em funções splines.Um problema de grande interesse na área de ADF é o de testes de hipóteses. Assuma que as curvas {X 1 (t), . . . , X n 1 (t) : t ∈ T } e {Y 1 (t), . . . , Y n 2 (t) : t ∈ T } são amostras independentes de processos estocásticos X e Y, respectivamente. Denote as curvas médias dos processos X , Y por µ X (t) e µ Y (t), respectivamente. Existe o interesse de testar a igualdade dessas curvas médias quando dados funcionais são observados. Pode-se também testar se uma curva média é igual a uma certa função conhecida, ou seja, se µ X (t) = f (t). Estatísticas do teste baseadas na diferença quadrática integrada e nas distâncias de Hellinger, de Kullback-Leibler e L 1 serão apresentadas e suas distribuições sob a hipótese nula serão estudadas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.