The aim of this study was to review the literature about the effects of activity-based therapy (ABT) interventions on mobility, functional independence, and quality of life for people with a spinal cord injury (SCI). A systematic review with meta-analysis of randomized and non-randomized trials was performed, including adults with a non-progressive SCI at any level. The intervention of interest was ABT, defined as any intervention that sought to improve muscle activation or sensory function below the level of injury in the spinal cord and does not rely on compensatory mechanisms for improving function. The comparison was either no intervention or conventional physical interventions targeted to regions above the level of injury. The outcome measures were quality-of-life questionnaires, mobility assessments, and functional independence scales. Nineteen trials were included in this systematic review. Three compared ABT to no intervention and 16 to conventional physical rehabilitation. The methodological quality of the trials was assessed using the PEDro scale as moderate. Six studies investigated the effects of ABT interventions for the upper limbs, 11 investigated gait-related interventions, and two applied multi-modal interventions. Compared with no intervention, the meta-analysis found that ABT was not more effective for improving independence or lower limb mobility, but conferred a large positive effect on upper limb function. Compared with conventional physical interventions, there was no significant effect of ABT on lower limb mobility, independence, or quality of life; however, it had positive effects on upper limbs. In conclusion, there is evidence that ABT can improve independence and functional ability when applied to the upper limbs in people with SCI. However, it is not superior to conventional physical interventions when applied to the lower limbs.
Study design: A systematic review. Objectives: The aim of this systematic review was to establish whether combined aerobic training and muscle strength training is effective in improving aerobic fitness, muscle strength, function and/or quality of life (QoL) in people with spinal cord injury (SCI). Settings: Faculty of Health Sciences. University of Sydney, NSW, Australia. Methods: A search was conducted for randomized controlled trials (RCTs), controlled trials, uncontrolled clinical trials, case series and cross-over studies involving exercise interventions that included a combination of aerobic and strength components, either in circuitmode or in sequence for people with SCI. Methodological quality was independently rated using the PEDro scale and key findings were extracted from trials by two reviewers. Results: The search identified 7981 abstracts, from which nine trials met the inclusion criteria. From the nine selected trials, seven reported aerobic outcomes, two of which showed a statistically significant within-group difference in aerobic fitness. Five studies reported muscle strength outcomes, four of them showed a statistically significant within-group mean difference on at least one outcome measure. Two studies looked at QoL, one of them found a statistically significant between-group difference on one outcome measure. Conclusion: Our systematic review showed that literature on SCI population is scarce, of low quality and findings of existing studies are inconsistent. Thus, further RCTs with larger number of participants are needed to make a definite conclusion about the influence of combined aerobic and muscle strength training on aerobic fitness, muscle strength and QoL in people with SCI.
Background: Blood flow restriction exercise (BFR-E) could be a useful training adjunct for patients with weakness after stroke to augment the effects of exercise on muscle activity. We aimed to examine neurophysiological changes (primary aim) and assess patient perceptions (secondary aim) following BFR-E. Methods: Fourteen participants with stroke performed BFR-E (1 session) and exercise without blood flow restrictsion (Exercise only) (1 session), on two days, ≈7 days apart. In each session, two sets of tibialis anterior (TA) contractions were performed and electromyography (EMG) was recorded. Eight participants underwent transcranial magnetic stimulation (single-pulse stimulation, short interval intracortical inhibition (SICI), intracortical facilitation (ICF)) and peripheral electrical stimulation (maximal peak-to-peak M-wave (M-max)) of the TA before, immediately-after, 10-min-after and 20-min-after BFR-E and Exercise only. Numerical rating scores (NRS) for pain, discomfort, fatigue, safety, focus and difficulty were collected for all subjects (n = 14). Paired comparisons and linear mixed models assessed the effects of BFR-E and Exercise only. Results: No adverse events due to exercise were reported. There was no contraction-number × condition interaction for EMG amplitude during exercise (p = 0.15), or time × condition interaction for single-pulse stmulation, SICI, ICF or M-max amplitude (p = 0.34 to p = 0.97). There was no difference between BFR-E and Exercise only in NRS scores (p = 0.10 to p = 0.50). Conclusion: Using our training paradigm, neurophysiological parameters, feasibility, tolerability and perceptions of safety were not different between BFR-E and Exercise only. As participants were generally well-functioning, our results are not generalizable to lower functioning people with stroke, different (more intense) exercise protocols or longer term training over weeks or months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.