Protein malnutrition induces structural, neurochemical and functional changes in the central nervous system leading to alterations in cognitive and behavioral development of rats. The aim of this work was to investigate the effects of postnatal protein malnutrition on learning and memory tasks. Previously malnourished (6% protein) and well-nourished rats (16% protein) were tested in three experiments: working memory tasks in the Morris water maze (Experiment I), recognition memory of objects (Experiment II), and working memory in the water T-maze (Experiment III). The results showed higher escape latencies in malnourished animals in Experiment I, lower recognition indexes of malnourished animals in Experiment II, and no differences due to diet in Experiment III. It is suggested that protein malnutrition imposed on early life of rats can produce impairments on both working memory in the Morris maze and recognition memory in the open field tests.
The present study investigated the effects of early protein malnutrition on the spatial learning and memory processes. The consequences of malnutrition for the cholinergic system were evaluated by comparing the performance of malnourished and control animals in the Morris water maze after treatment with scopolamine. The learning test consisted of placing the animal in the maze to escape to a submerged platform with 12 trials per day for two consecutive days. After 24 trials, the platform was removed, the rats were placed in the maze and the time spent by them in each quadrant was recorded. After 28 days the animals were tested in a single trial to verify the retention of the spatial information. In the first Experiment, scopolamine (0.0, 0.2, 0.4 and 0.6 mg/kg per ml. i.p.) was administered 20 min before the experimental sessions. In the second experiment, a dose of 0.6 mg/kg was administered after the sessions, during the period in which learning consolidation occurs. In the first experiment, there was a significant effect of the drug, with scopolamine impairing, learning in both nutritional conditions. In the saline condition, control animals presented a better performance when compared with malnourished animals. However, 28 days later, both groups increased their latencies. With 0.2 and 0.4 mg/kg of scopolamine, the performance of both nutritional groups was similar and with 0.6 mg/kg malnourished animals performed better than controls. In the second experiment, malnourished animals were also less reactive to the effects of scopolamine, resulting in lower impairments as compared to control animals. These data suggest long-term changes in learning and memory as the result of changes produced by protein malnutrition in the cholinergic neurotransmitter system.
Early protein malnutrition induces structural, neurochemical and functional changes in the central nervous system leading to alterations in cognitive and behavioral development of rats. The aim of the present study was to investigate the effects of protein malnutrition during lactation on acquisition and retention of spatial information using different training procedures (spaced x condensed trials). Rats treated with 16% (well-nourished) or 6% (malnourished) protein diets during the lactation phase and nutritionally recovered until 70 days of age were tested in the Morris water-maze in procedures of 1 trial/day (spaced trials), 4, 8, 12 trials/day (intermediate density) and 24 trials/day (condensed trials), completing 24 trials at the end of training. Seven and 28 days after the training the animals were tested again in just one trial to assess long-term memory. The results showed that protein malnutrition caused deficits on the spatial learning and memory in spaced but not in intermediate and condensed trials procedure. Seven and 28 days after the training there was an increase in the latency to find the platform but only malnourished animals submitted to 1 trial/day had significantly higher latency as compared with well-nourished controls. One of the possible hypotheses is that the effect protein malnutrition only in the procedure of spaced trials could be due to deficits in memory consolidation. It is suggested that these deficits can be the result of alterations produced by protein malnutrition in the hippocampal formation or in long-lasting emotional and/or motivational aspects of the rat's behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.