This study aimed to evaluate the production parameters of herds in 100 dairy family farms in the mesoregion of the Acre Valley, in Western Amazon, Brazil. To this end, the farms were divided into two levels of milk production. Data were collected from March to June 2016, using a 248-question semi-structured form and on-site observations. The information was recorded in SPSS® spreadsheets. Dairy farmers were divided into two clusters known as "high production cluster" (1,755.65 L ha-1 yr-1) and "low production cluster" (492.75 L ha-1 yr-1), using the K-means non-hierarchical method. Descriptive statistics was used and, with the aid of the multivariate cluster analysis, cattle ranchers were divided into the two clusters (high and low production). The results showed that the high-production cluster had larger total milk production (L milk cow-1 day-1) and family income within smaller areas and using less workforce. The farmers in this group also used more ear tags for cattle identification and more technologies such as electric fence and artificial insemination at a fixed time. We concluded that family farms should improve their management and receive technical assistance to strengthen their weaknesses in dairy-cow health and reproduction systems. Moreover, milk yield in these dairy farms should be improved to increase profitability of farmers.
Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição 4.0 Internacional (CC BY 4.0). O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento, desde que sejam atribuídos créditos aos autores, e sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
________________________________________________________________________________ ResumoObjetivou-se identificar os pontos fracos em propriedades leiteiras e sugerir correções, visando o aumento da produtividade e rentabilidade. O estudo aconteceu em cinco propriedades na regional do baixo Acre/Amazônia Ocidental, entre abril e maio de 2018, utilizando questionário semiestruturado, contendo 549 questões para coletar as informações. Cada pesquisador analisou e identificou os pontos falhos sugerindo a melhor ferramenta de gestão para minimizar o problema. Os principais pontos fracos foram identificados e elencados por ordem decrescente na Matriz GUT. A partir da pontuação atribuída, definiu-se a ferramenta que seria aplicada. Concluiu-se que, o uso delas traz uma dinâmica assertiva na resolução dos problemas prioritários apresentados na atividade. Palavras-chave: Leite, diagrama de Ishikawa, pecuária, ciclo PDCA, pontos fracos AbstractThe objective was to identify weaknesses in dairy properties and to suggest corrections, aiming at increasing productivity and profitability. The study took place in five properties in the low acre / Western Amazon region between April and May 2018 and could be used as semi-structured, containing 549 questions to collect as information. Each researcher analyzed and identified the missing points for a better solution to minimize the problem. Weaknesses were identified and listed in descending order in the GUT matrix. From the assigned list, a tool was defined that would be applied. In conclusion, their use brings an assertive dynamic in solving the priority problems reported in the activity.
Objetivou-se caracterizar 100 propriedades leiteiras, em regime de economia familiar, da Mesorregião do Vale do Acre, na Amazônia Ocidental, no que diz respeito aos aspectos técnicos, econômicos, ambientais e profissionais considerando diferentes níveis de produtividade de leite. Os dados foram coletados no período de março a junho de 2016, a partir de um formulário semiestruturado, contendo 43 questões, por meio da observação in loco, bem como pelas respostas obtidas com os proprietários; e cadastrados em planilhas Excel®. Adotou-se metodologia descritiva para análise dos dados. A pesquisa revelou uma maior presença de jovens na área rural quando comparada à média nacional, mas a baixa escolaridade e formação profissional perpetuam a baixa adoção de tecnologias, ausência de controle zootécnico e gerencial além da limitada percepção sobre preservação ambiental. Concluiu-se que existe produção leiteira sustentável no Estado porém, faz-se necessário maiores investimentos na área educacional, transferência e incorporação tecnológica, além de efetivo controle técnico e gerencial por parte dos produtores.
This study aimed to analyze the applicability of management tools such as SWOT matrix, GUT matrix, Brainstorming, PDCA, Ishikawa diagram, and 5W2H in improving milk quality in rural properties for family labor. The survey was conducted in 18 properties in the municipality of Senador Guiomard, State of Acre, Brazil, during the period from January to December 2019. The properties were divided into two groups (treatment group-TG and control group-CG) and the data obtained through a form with 255 questions for diagnosis and analysis (LQL-GO) for somatic cell count (SCC) and total bacterial count (TBC) were tabulated in spreadsheets (Excel®) and subjected to statistical analysis by the Wilcoxon test. Nineteen weaknesses were obtained through the GUT matrix. The implementation of milking practices using tools obtained an average reduction of 31.4% for SCC and 63% for TBC in TG and a reduction of 39.3% for SCC and an increase of 33.7% for TBC in CG. Thus, the management tools applied to milk quality are capable of generating positive results (p < 0.05) in microbiological control, facilitating quick decision-making, aiming at the correction of weaknesses, and, consequently, an increase in profitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.