Lipases have key roles in insect lipid acquisition, storage, and mobilization and are also fundamental to many physiological processes in insects. Lipids are an important component of insect diets, where they are hydrolyzed in the midgut lumen, absorbed, and used for the synthesis of complex lipids. The South American palm weevil Rhynchophorus palmarum is one of the most important pests on commercial palm plantations. However, there are few studies about lipid digestion for this insect. In this work, we have described the biochemical characterization of the lipase activity in the posterior midgut of the R. palmarum palm weevil. Lipase activity was highest between the temperatures of 37 °C and 45 °C and at pH 6.5. Lipase activity was also sensitive to variations in salt and calcium concentrations. Lipases have been described structurally as enzymes with the Ser-His-Asp Catalytic Triad, containing an active serine. The serine protease inhibitor PMSF (phenylmethane sulfonyl fluoride) inhibited the lipases from R. palmarum, demonstrating the importance of a serine residue for this activity. The ability of the lipases to hydrolyze p-Nitrophenyl esters with different chain lengths has revealed the activities of a broad range of substrates. The lipase activities of R. palmarum increased in the presence of reduced glutathione (GSH) and dithiothreitol (DTT), while in the presence of oxidized glutathione (GSSG), activities were drastically reduced. To our knowledge, this study has provided the first information about lipase activity in the R. palmarum palm weevil.
The interaction of small molecules with DNA has been quite important, since this biomolecule is currently the major target for a wide range of drugs in clinical use or advanced clinical research phase. Thus, the present work aimed to assess the interaction process between the bioactive compound 11a-N-tosyl-5-carba-pterocarpan, (LQB-223), that presents antitumor activity, with DNA, employing spectroscopic techniques, electrophoresis, viscosity and theoretical studies. Through UV-vis and molecular fluorescence spectroscopy, it was possible to infer that the preferential quenching mechanism was static, characterized by non-fluorescent supramolecular complex formation between the LQB-223 and DNA. The binding constant was 1.94∙10Lmol (30°C) and, according to the thermodynamic parameters, the main forces involved in the interaction process are hydrophobic. Potassium iodide assay, competition with ethidium bromide, fluorescence contact energy transfer and melting temperature profile of DNA were employed to evaluate the binding mode. Except for KI assay, all results obtained indicated minor groove as the preferential binding mode of LQB-223 to DNA. These observations were supported by ionic strength assay, viscosity and molecular dynamics and docking studies. Finally, electrophoresis analysis demonstrated that the interaction does not promote DNA fragmentation, but it leads to variation in the migration profile after increasing the ligand concentration.
It is widely known that high fat diet (HFD) can contribute to the advent of health problems. Recent studies have indicated that obesity imposes a hemodynamic overload to the kidneys. In order to further investigate such injuries, two groups of six Swiss mice each were fed with a controlled AIN93G diet or a high fat (AIN93G modified) diet for eight weeks. Blood samples were collected to determine the hormonal, lipid profile, glucose, urea, and creatinine levels. Histopathological and immunohistochemical analysis were carried out to analysis the kidney damage. Fractions of renal membranes were prepared to assess the Na,K-ATPase activity, lipid peroxidation, total cholesterol, and phospholipid content. The results indicated that the blood lipid profile, urea and creatinine was not altered by the HFD. On the other hand, it was observed in HFD diet mice elevated glucose blood levels along with an augment on insulin and a decrease on corticosterone release. HFD provoked a reduction in the diameter of the convoluted tubules and cell volume in Bowman's capsule and an increased number of positive cells with Na,K-ATPase, but reduced the Na,K-ATPase activity and the cholesterol content in the kidney cell membrane but favored the lipid peroxidation.
Energy homeostasis is an essential process during oogenesis, nutrients are required for suitable embryonic development, and recently, studies have investigated metabolic activity during this process. This work aims the investigation of dynamics of energy source utilization of
Rhynchophorus palmarum
during embryogenesis. For this, we first evaluated the mobilization kinetics of the lipids and glycogen. Thereafter, the synthesis of RNA, protein, and the involvement of enzyme of the glycolytic and pentose-phosphate pathways. Results showed that lipid content decreased in contrast with the lipase activity. The total glycogen amounts it was partly consumed and the glucose content increased, but then values remained stable until hatching. Total RNA content increased, and no significant changes in total protein content were observed. A study of the glycolytic pathway data showed activity of hexokinase and pyruvate kinase at the beginning of embryogenesis. Furthermore, glucose-6-phosphate formed is driven into the pentose-phosphate pathway viewed the high activity of glucose-6-phosphate dehydrogenase. Finally, these results showed that mobilization of different energy sources together with different enzymatic activities has an important role in embryonic development of
R. palmarum
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.