The parallel coordinates technique is widely used for the analysis of multivariate data. During recent decades significant research efforts have been devoted to exploring the applicability of the technique and to expand upon it, resulting in a variety of extensions. Of these many research activities, a surprisingly small number concerns user-centred evaluations investigating actual use and usability issues for different tasks, data and domains. The result is a clear lack of convincing evidence to support and guide uptake by users as well as future research directions. To address these issues this paper contributes a thorough literature survey of what has been done in the area of user-centred evaluation of parallel coordinates. These evaluations are divided into four categories based on characterization of use, derived from the survey. Based on the data from the survey and the categorization combined with the authors' experience of working with parallel coordinates, a set of guidelines for future research directions is proposed.
Medical imaging plays a central role in a vast range of healthcare practices. The usefulness of 3D visualizations has been demonstrated for many types of treatment planning. Nevertheless, full access to 3D renderings outside of the radiology department is still scarce even for many image-centric specialties. Our work stems from the hypothesis that this under-utilization is partly due to existing visualization systems not taking the prerequisites of this application domain fully into account. We have developed a medical visualization table intended to better fit the clinical reality. The overall design goals were two-fold: similarity to a real physical situation and a very low learning threshold. This paper describes the development of the visualization table with focus on key design decisions. The developed features include two novel interaction components for touch tables. A user study including five orthopedic surgeons demonstrates that the system is appropriate and useful for this application domain.
Evaluation is a key research challenge within the international Information Visualization (InfoVis) community, and Heuristic Evaluation is one recognized method. Various sets of heuristics have been proposed but there remains no consensus as to which heuristics are most useful for addressing aspects specific to the complex interactive visual displays used in modern InfoVis systems. This paper presents a first effort to empirically determine a new set of such general heuristics tailored for Heuristic Evaluation of common and important usability problems in InfoVis techniques. Participants in the study rated how well a total of 63 heuristics from 6 earlier published heuristic sets could explain a collection of 74 usability problems derived from earlier InfoVis evaluations. The results were used to synthesize 10 heuristics that, as a set, provided the highest explanatory coverage. The paper also stresses the challenges for future research to validate and further improve upon this set.
Visual comparison is an intrinsic part of interactive data exploration and analysis. The literature provides a large body of existing solutions that help users accomplish comparison tasks. These solutions are mostly of visual nature and custom-made for specific data. We ask the question if a more general support is possible by focusing on the interaction aspect of comparison tasks. As an answer to this question, we propose a novel interaction concept that is inspired by real-world behavior of people comparing information printed on paper. In line with real-world interaction, our approach supports users (1) in interactively specifying pieces of graphical information to be compared, (2) in flexibly arranging these pieces on the screen, and (3) in performing the actual comparison of side-by-side and overlapping arrangements of the graphical information. Complementary visual cues and add-ons further assist users in carrying out comparison tasks. Our concept and the integrated interaction techniques are generally applicable and can be coupled with different visualization techniques. We implemented an interactive prototype and conducted a qualitative user study to assess the concept's usefulness in the context of three different visualization techniques. The obtained feedback indicates that our interaction techniques mimic the natural behavior quite well, can be learned quickly, and are easy to apply to visual comparison tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.