The parallel coordinates technique is widely used for the analysis of multivariate data. During recent decades significant research efforts have been devoted to exploring the applicability of the technique and to expand upon it, resulting in a variety of extensions. Of these many research activities, a surprisingly small number concerns user-centred evaluations investigating actual use and usability issues for different tasks, data and domains. The result is a clear lack of convincing evidence to support and guide uptake by users as well as future research directions. To address these issues this paper contributes a thorough literature survey of what has been done in the area of user-centred evaluation of parallel coordinates. These evaluations are divided into four categories based on characterization of use, derived from the survey. Based on the data from the survey and the categorization combined with the authors' experience of working with parallel coordinates, a set of guidelines for future research directions is proposed.
The identification of significant sequences in large and complex event-based temporal data is a challenging problem with applications in many areas of today's information intensive society. Pure visual representations can be used for the analysis, but are constrained to small data sets. Algorithmic search mechanisms used for larger data sets become expensive as the data size increases and typically focus on frequency of occurrence to reduce the computational complexity, often overlooking important infrequent sequences and outliers. In this paper we introduce an interactive visual data mining approach based on an adaptation of techniques developed for web searching, combined with an intuitive visual interface, to facilitate user-centred exploration of the data and identification of sequences significant to that user. The search algorithm used in the exploration executes in negligible time, even for large data, and so no pre-processing of the selected data is required, making this a completely interactive experience for the user. Our particular application area is social science diary data but the technique is applicable across many other disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.