Amyotrophic lateral sclerosis (ALS) is a complex disease characterized by the interplay of genetic and environmental factors for which, despite decades of intense research, diagnosis remains rather delayed, and most therapeutic options fail. Therefore, unravelling other potential pathogenetic mechanisms and searching for reliable markers are high priorities. In the present study, we employ the SOMAscan assay, an aptamer-based proteomic technology, to determine the circulating proteomic profile of ALS patients. The expression levels of ~1300 proteins were assessed in plasma, and 42 proteins with statistically significant differential expression between ALS patients and healthy controls were identified. Among these, four were upregulated proteins, Thymus- and activation-regulated chemokine, metalloproteinase inhibitor 3 and nidogen 1 and 2 were selected and validated by enzyme-linked immunosorbent assays in an overlapping cohort of patients. Following statistical analyses, different expression patterns of these proteins were observed in the familial and sporadic ALS patients. The proteins identified in this study might provide insight into ALS pathogenesis and represent potential candidates to develop novel targeted therapies.
Complete animal welfare evaluation in intensive farming is challenging. With this study, we investigate new biomarkers for animal physical and mental health by comparing plasma expression of biochemical indicators in dairy cows reared in three different systems: (A) semi-intensive free-stall, (B) non-intensive tie-stall, and (C) intensive free-stall. Additionally, protein levels of mature brain-derived neurotrophic factor (mBDNF) and its precursor form (proBDNF) and indoleamine 2,3-dioxygenase (IDO1) specific activity were evaluated in brain samples collected from 12 cattle culled between 73 and 138 months of age. Alterations in plasma lipid composition and in the kynurenine pathway of tryptophan metabolism were observed in the tie-stall-reared animals. The total plasma BDNF concentration was higher in tie-stall group compared to the two free-housing groups. Brain analysis of the tie-stall animals revealed a different mBDNF/proBDNF ratio, with a higher level of proBDNF (p < 0.001). Our data are similar to previous studies on animal models of depression, which reported that inhibition of the conversion of proBDNF in its mature form and/or elevated peripheral kynurenine pathway activation may underlie cerebral biochemical changes and induce depressive-like state behavior in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.