The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify “significant concentrations” of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and elsewhere.
Deep-sea sponge grounds are vulnerable marine ecosystems, which through their benthic-pelagic coupling of nutrients, are of functional relevance to the deep-sea realm. The impact of fishing bycatch is here evaluated for the first time at a bathyal, sponge-dominated ecosystem in the high seas managed by the Northwest Atlantic Fisheries Organization. Sponge biomass surfaces created from research survey data using both random forest modeling and a gridded surface revealed 231,140 t of sponges in the area. About 65% of that biomass was protected by current fisheries closures. However, projections of trawling tracks estimated that the sponge biomass within them would be wiped out in just 1 year by the current level of fishing activity if directed on the sponges. Because these sponges filter 56,143 ± 15,047 million litres of seawater daily, consume 63.11 ± 11.83 t of organic carbon through respiration, and affect the turnover of several nitrogen nutrients, their removal would likely affect the delicate ecological equilibrium of the deep-sea benthic ecosystem. We estimated that, on Flemish Cap, the economic value associated with seawater filtration by the sponges is nearly double the market value of the fish catch. Hence, fishery closures are essential to reach sponge conservation goals as economic drivers cannot be relied upon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.