Highlights
Hydroxychloroquine pharmacokinetic behavior in COVID-19 patients cannot be predicted using the systemic lupus erythematosus population or by rheumatoid arthritis patients.
Bronchoalveolar lavage fluid could be considered a much more instructive “quality control” matrix than plasma on the degree of hydroxychloroquine exposure in the lung.
Low plasma concentrations should not induce an increase of the drug dosage because the lung exposure should be high.
Background: Extracorporeal membrane oxygenation (ECMO) is increasingly used in intensive care units and can modify drug pharmacokinetics and lead to under-exposure associated with treatment failure. Ceftolozane/tazobactam is an antibiotic combination used for complicated infections in critically ill patients. Launched in 2015, sparse data are available on the influence of ECMO on the pharmacokinetics of ceftolozane/tazobactam. The aim of the present study was to determine the influence of ECMO on the pharmacokinetics of ceftolozane-tazobactam.Methods: An ex vivo model (closed-loop ECMO circuits primed with human whole blood) was used to study adsorption during 8-h inter-dose intervals over a 24-h period (for all three ceftolozane/tazobactam injections) with eight samples per inter-dose interval. Two different dosages of ceftolozane/tazobactam injection were studied and a control (whole blood spiked with ceftolozane/tazobactam in a glass tube) was performed. An in vivo porcine model was developed with a 1-h infusion of ceftolozane-tazobactam and concentration monitoring for 11 h. Pigs undergoing ECMO were compared with a control group. Pharmacokinetic analysis of in vivo data (non-compartmental analysis and non-linear mixed effects modelling) was performed to determine the influence of ECMO.
Results:With the ex vivo model, variations in concentration ranged from − 5.73 to 1.26% and from − 12.95 to − 2.89% respectively for ceftolozane (concentrations ranging from 20 to 180 mg/l) and tazobactam (concentrations ranging from 10 to 75 mg/l) after 8 h. In vivo pharmacokinetic exploration showed that ECMO induces a significant decrease of 37% for tazobactam clearance without significant modification in the pharmacokinetics of ceftolozane, probably due to a small cohort size.
Conclusions:Considering that the influence of ECMO on the pharmacokinetics of ceftolozane/tazobactam is not clinically significant, normal ceftolozane and tazobactam dosing in critically ill patients should be effective for patients undergoing ECMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.