Biomass burning (BB) releases large quantities of phenols (ArOH), which can partition into cloud/fog drops and aerosol liquid water (ALW), react, and form aqueous secondary organic aerosol (aqSOA). While simple phenols are too volatile to significantly partition into particle water, highly substituted ArOH partition more strongly and might be important sources of aqSOA in ALW. To investigate this, we measured the ·OH oxidation kinetics and aqSOA yields for six highly substituted ArOH from BB. Second-order rate constants are high, in the range (1.9–14) × 109 M–1 s–1 at pH 2 and (14–25) × 109 M–1 s–1 at pH 5 and 6. Mass yields of aqSOA are also high, with an average (±1σ) value of 82 (±12)%. ALW solutes have a range of impacts on phenol oxidation by ·OH: a BB sugar and some inorganic salts suppress oxidation, while a nitrate salt and transition metals enhance oxidation. Finally, we estimated rates of aqueous- and gas-phase formation of SOA from a single highly substituted phenol as a function of liquid water content (LWC), from conditions of cloud/fog (0.1 g-H2O m–3) to ALW (10 μg-H2O m–3). Formation of aqSOA is significant across the LWC range, although gas-phase ·OH becomes dominant under ALW conditions. We also see a generally large discrepancy between measured and modeled aqueous ·OH concentrations across the LWC range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.