Biomass burning emits large amounts of phenols, which can partition into cloud/fog drops and aerosol liquid water (ALW) and react to form aqueous secondary organic aerosol (aqSOA). Triplet excited states of organic compounds ( 3 C*) are likely oxidants, but there are no rate constants with highly substituted phenols that have high Henry's law constants (K H ) and are likely important in ALW. To address this gap, we investigated the kinetics of six highly substituted phenols with the triplet excited state of 3,4-dimethoxybenzaldehyde. Second-order rate constants at pH 2 are all fast, (2.6−4.6) × 10 9 M −1 s −1 , while values at pH 5 are 2−5 times smaller. Rate constants are reasonably described by a quantitative structure−activity relationship with phenol oxidation potentials, allowing rate constants of other phenols to be predicted. Triplet-phenol kinetics are unaffected by ammonium sulfate, sodium chloride, galactose (a biomassburning sugar), or Fe(III). In contrast, ammonium nitrate increases the rate of phenol loss by making hydroxyl radicals, while Cu(II) inhibits phenol decay. Mass yields of aqueous SOA from triplet reactions are large and range from 59 to 99%. Calculations using our data along with previous oxidant measurements indicate that phenols with high K H can be an important source of aqSOA in ALW, with 3 C* typically the dominant oxidant.
Abstract. Aerosol liquid water (ALW) is a unique reaction medium, but its chemistry is poorly understood. For example, little is known of photooxidant concentrations – including hydroxyl radical (●OH), singlet molecular oxygen (1O2*), and oxidizing triplet excited states of organic matter (3C*) – even though they likely drive much of ALW chemistry. Due to the very limited water content of particles, it is difficult to quantify oxidant concentrations in ALW directly. To predict these values, we measured photooxidant concentrations in illuminated aqueous particle extracts as a function of dilution and used the resulting oxidant kinetics to extrapolate to ALW conditions. We prepared dilution series from two sets of particles collected in Davis, California: one from winter (WIN) and one from summer (SUM). Both periods are influenced by biomass burning, with dissolved organic carbon (DOC) in the extracts ranging from 10 to 495 mg C L−1. In the winter sample, the ●OH concentration is independent of particle mass concentration, with an average value of 5.0 (± 2.2) × 10−15 M, while in summer ●OH increases with DOC in the range (0.4 − 7.7) × 10−15 M. In both winter and summer samples, 3C* concentrations increase rapidly with particle mass concentrations in the extracts, and then plateau under more concentrated conditions, with a range of (0.2 − 7) × 10−13 M. WIN and SUM have the same range of 1O2* concentrations, (0.2 − 8.5) × 10−12 M, but in WIN the 1O2* concentration increases linearly with DOC, while in SUM 1O2* approaches a plateau. We next extrapolated the relationships of oxidant formation rates and sinks as a function of particle mass concentration from our dilute extracts to the much more concentrated condition of aerosol liquid water. Predicted ●OH concentrations in ALW (including mass transport of ●OH from the gas phase) are (5 − 8) × 10−15 M, similar to those in fog/cloud waters. In contrast, predicted concentrations of 3C* and 1O2* in ALW are approximately 10 to 100 times higher than in cloud/fogs, with values of (4 – 9) × 10−13 M and (1 – 5) × 10−12 M, respectively. Although ●OH is often considered the main sink for organic compounds in the atmospheric aqueous phase, the much higher concentrations of 3C* and 1O2* in aerosol liquid water suggest these photooxidants will be more important sinks for many organics in particle water.
Background Disease severity in coronavirus disease 2019 (COVID-19) may be associated with inoculation dose. This has triggered interest in intubation barrier devices to block droplet exposure; however, aerosol protection with these devices is not known. This study hypothesized that barrier devices reduce aerosol outside of the barrier. Methods Aerosol containment in closed, semiclosed, semiopen, and open barrier devices was investigated: (1) “glove box” sealed with gloves and caudal drape, (2) “drape tent” with a drape placed over a frame, (3) “slit box” with armholes and caudal end covered by vinyl slit diaphragms, (4) original “aerosol box,” (5) collapsible “interlocking box,” (6) “simple drape” over the patient, and (7) “no barrier.” Containment was investigated by (1) vapor instillation at manikin’s right arm with video-assisted visual evaluation and (2) submicrometer ammonium sulfate aerosol particles ejected through the manikin’s mouth with ventilation and coughs. Samples were taken from standardized locations inside and around the barriers using a particle counter and a mass spectrometer. Aerosol evacuation from the devices was measured using standard hospital suction, a surgical smoke evacuator, and a Shop-Vac. Results Vapor experiments demonstrated leakage via arm holes and edges. Only closed and semiclosed devices and the aerosol box reduced aerosol particle counts (median [25th, 75th percentile]) at the operator’s mouth compared to no barrier (combined median 29 [−11, 56], n = 5 vs. 157 [151, 166], n = 5). The other barrier devices provided less reduction in particle counts (133 [128, 137], n = 5). Aerosol evacuation to baseline required 15 min with standard suction and the Shop-Vac and 5 min with a smoke evacuator. Conclusions Barrier devices may reduce exposure to droplets and aerosol. With meticulous tucking, the glove box and drape tent can retain aerosol during airway management. Devices that are not fully enclosed may direct aerosol toward the laryngoscopist. Aerosol evacuation reduces aerosol content inside fully enclosed devices. Barrier devices must be used in conjunction with body-worn personal protective equipment. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.