Background Disease severity in coronavirus disease 2019 (COVID-19) may be associated with inoculation dose. This has triggered interest in intubation barrier devices to block droplet exposure; however, aerosol protection with these devices is not known. This study hypothesized that barrier devices reduce aerosol outside of the barrier. Methods Aerosol containment in closed, semiclosed, semiopen, and open barrier devices was investigated: (1) “glove box” sealed with gloves and caudal drape, (2) “drape tent” with a drape placed over a frame, (3) “slit box” with armholes and caudal end covered by vinyl slit diaphragms, (4) original “aerosol box,” (5) collapsible “interlocking box,” (6) “simple drape” over the patient, and (7) “no barrier.” Containment was investigated by (1) vapor instillation at manikin’s right arm with video-assisted visual evaluation and (2) submicrometer ammonium sulfate aerosol particles ejected through the manikin’s mouth with ventilation and coughs. Samples were taken from standardized locations inside and around the barriers using a particle counter and a mass spectrometer. Aerosol evacuation from the devices was measured using standard hospital suction, a surgical smoke evacuator, and a Shop-Vac. Results Vapor experiments demonstrated leakage via arm holes and edges. Only closed and semiclosed devices and the aerosol box reduced aerosol particle counts (median [25th, 75th percentile]) at the operator’s mouth compared to no barrier (combined median 29 [−11, 56], n = 5 vs. 157 [151, 166], n = 5). The other barrier devices provided less reduction in particle counts (133 [128, 137], n = 5). Aerosol evacuation to baseline required 15 min with standard suction and the Shop-Vac and 5 min with a smoke evacuator. Conclusions Barrier devices may reduce exposure to droplets and aerosol. With meticulous tucking, the glove box and drape tent can retain aerosol during airway management. Devices that are not fully enclosed may direct aerosol toward the laryngoscopist. Aerosol evacuation reduces aerosol content inside fully enclosed devices. Barrier devices must be used in conjunction with body-worn personal protective equipment. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
Background Rapid infusion of warmed blood products is the cornerstone of trauma resuscitation and treatment of surgical and obstetric massive hemorrhage. Integral to optimizing this delivery is selection of an intravenous (IV) catheter and use of a rapid infusion device (RID). We investigated which IV catheter and RID system enabled the greatest infusion rate of blood products and the governing catheter characteristics. Study Design and Methods The maximum flow rates of nine IV catheters were measured while infusing a mixture of packed red blood cells and fresh frozen plasma at a 1:1 ratio using a RID with and without a patient line extension. To account for IV catheters that achieved the RID's maximum 1000 ml/min, the conductance of each infusion circuit configuration was calculated. Results IV catheters of 7‐Fr caliber or higher reached the maximum pressurized flow rate. The 9‐Fr multi‐lumen access catheter (MAC) achieved the greatest conductance, over sevenfold greater than the 18 g peripheral catheter (4.6 vs. 0.6 ml/min/mmHg, p < .001). Conductance was positively correlated with internal radius (β = 1.098, 95% CI 4.286–5.025, p < .001) and negatively correlated with length (β= − 0.495, 95% CI −0.007 to 0.005, p < .001). Use of an extension line (β= − 0.094, 95% CI −0.505 to −0.095, p = .005) was independently associated with reduced conductance in large caliber catheters. Conclusion Short, large‐diameter catheters provided the greatest infusion rates of massive transfusion blood products for the least pressure. For patients requiring the highest transfusion flow rates, extension tubing should be avoided when possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.